Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uniform boundedness principle
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theorem stating that pointwise boundedness implies uniform boundedness}} {{for-multi|the definition of uniformly bounded functions|Uniform boundedness|the conjectures in number theory and algebraic geometry|Uniform boundedness conjecture (disambiguation)}} In [[mathematics]], the '''uniform boundedness principle''' or '''Banach–Steinhaus theorem''' is one of the fundamental results in [[functional analysis]]. Together with the [[Hahn–Banach theorem]] and the [[open mapping theorem (functional analysis)|open mapping theorem]], it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of [[continuous linear operator]]s (and thus [[bounded operator]]s) whose domain is a [[Banach space]], pointwise [[Bounded set|boundedness]] is equivalent to uniform boundedness in [[operator norm]]. The theorem was first published in 1927 by [[Stefan Banach]] and [[Hugo Steinhaus]], but it was also proven independently by [[Hans Hahn (mathematician)|Hans Hahn]]. ==Theorem== {{math theorem|name=Uniform Boundedness Principle|math_statement= Let <math>X</math> be a [[Banach space]], <math>Y</math> a [[normed vector space]] and <math>B(X,Y)</math> the space of all [[continuous linear operators]] from <math>X</math> into <math>Y</math>. Suppose that <math>F</math> is a collection of continuous linear operators from <math>X</math> to <math>Y.</math> If, for every <math>x \in X</math>, <math display=block>\sup_{T \in F} \|T(x)\|_Y < \infty,</math> then <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} < \infty.</math> }} The first inequality (that is, <math display=inline>\sup_{T \in F} \|T(x)\| < \infty</math> for all <math>x</math>) states that the functionals in <math>F</math> are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} = \sup_{\stackrel{T \in F}{\|x\| \leq 1}} \|T(x)\|_Y = \sup_{T \in F} \sup_{\|x\| \leq 1} \|T(x)\|_Y</math> and if <math>X</math> is not the trivial vector space (or if the supremum is taken over <math>[0, \infty]</math> rather than <math>[-\infty, \infty]</math>) then closed unit ball can be replaced with the unit sphere <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} = \sup_{\stackrel{T \in F,}{\|x\| = 1}} \|T(x)\|_Y.</math> The completeness of the Banach space <math>X</math> enables the following short proof, using the [[Baire category theorem]]. {{math proof | proof = Suppose <math>X</math> is a Banach space and that for every <math>x \in X,</math> <math display=block>\sup_{T \in F} \|T(x)\|_Y < \infty.</math> For every integer <math>n \in \N,</math> let <math display=block>X_n = \left\{x \in X \ : \ \sup_{T \in F} \|T (x)\|_Y \leq n \right\}.</math> Each set <math>X_n</math> is a [[closed set]] and by the assumption, <math display=block>\bigcup_{n \in \N} X_n = X \neq \varnothing.</math> By the [[Baire category theorem]] for the non-empty [[complete metric space]] <math>X,</math> there exists some <math>m \in \N</math> such that <math>X_m</math> has non-empty [[Interior (topology)|interior]]; that is, there exist <math>x_0 \in X_m</math> and <math>\varepsilon > 0</math> such that <math display=block>\overline{B_\varepsilon (x_0)} ~:=~ \left\{x \in X \,:\, \|x - x_0\| \leq \varepsilon \right\} ~\subseteq~ X_m.</math> Let <math>u \in X</math> with <math>\|u\| \leq 1</math> and <math>T \in F.</math> Then: <math display=block>\begin{align} \|T(u)\|_Y &= \varepsilon^{-1}\left\|T\left(x_0 + \varepsilon u\right) - T\left(x_0\right)\right\|_Y & [\text{by linearity of } T ] \\ &\leq \varepsilon^{-1}\left(\left\| T (x_0 + \varepsilon u) \right\|_Y + \left\|T(x_0)\right\|_Y \right ) \\ &\leq \varepsilon^{-1}(m + m). & [ \text{since } \ x_0 + \varepsilon u, \ x_0 \in X_m ] \\ \end{align}</math> Taking the supremum over <math>u</math> in the unit ball of <math>X</math> and over <math>T \in F</math> it follows that <math display=block>\sup_{T \in F} \|T\|_{B(X,Y)} ~\leq~ 2 \varepsilon^{-1} m ~ < ~ \infty.</math> }} There are also simple proofs not using the Baire theorem {{harv|Sokal|2011}}. ==Corollaries== {{math theorem|name=Corollary | math_statement= If a sequence of bounded operators <math>\left(T_n\right)</math> converges pointwise, that is, the limit of <math>\left(T_n(x)\right)</math> exists for all <math>x \in X,</math> then these pointwise limits define a bounded linear operator <math>T.</math> }} The above corollary does {{em|not}} claim that <math>T_n</math> converges to <math>T</math> in operator norm, that is, uniformly on bounded sets. However, since <math>\left\{T_n\right\}</math> is bounded in operator norm, and the limit operator <math>T</math> is continuous, a standard "<math>3\varepsilon</math>" estimate shows that <math>T_n</math> converges to <math>T</math> uniformly on {{em|compact}} sets. {{math proof | proof = Essentially the same as that of the proof that a pointwise convergent sequence of equicontinuous functions on a compact set converges to a continuous function. By uniform boundedness principle, let <math>M = \max\{\sup_n \|T_n\|, \|T\|\}</math> be a uniform upper bound on the operator norms. Fix any compact <math>K\subset X</math>. Then for any <math>\epsilon > 0</math>, finitely cover (use compactness) <math>K</math> by a finite set of open balls <math>\{B(x_i, r)\}_{i=1, ..., N}</math> of radius <math>r = \frac{\epsilon}{M}</math> Since <math>T_n \to T</math> pointwise on each of <math>x_1, ..., x_N</math>, for all large <math>n</math>, <math>\|T_n(x_i) - T(x_i)\|\leq \epsilon</math> for all <math>i= 1,..., N</math>. Then by triangle inequality, we find for all large <math>n</math>, <math>\forall x\in K, \|T_n(x) - T(x)\|\leq 3\epsilon</math>. }} {{math theorem | name=Corollary | math_statement= Any weakly bounded subset <math>S \subseteq Y</math> in a normed space <math>Y</math> is bounded. }} Indeed, the elements of <math>S</math> define a pointwise bounded family of continuous linear forms on the Banach space <math>X := Y',</math> which is the [[continuous dual space]] of <math>Y.</math> By the uniform boundedness principle, the norms of elements of <math>S,</math> as functionals on <math>X,</math> that is, norms in the second dual <math>Y'',</math> are bounded. But for every <math>s \in S,</math> the norm in the second dual coincides with the norm in <math>Y,</math> by a consequence of the [[Hahn–Banach theorem]]. Let <math>L(X, Y)</math> denote the continuous operators from <math>X</math> to <math>Y,</math> endowed with the [[operator norm]]. If the collection <math>F</math> is unbounded in <math>L(X, Y),</math> then the uniform boundedness principle implies: <math display=block>R = \left \{x \in X \ : \ \sup\nolimits_{T \in F} \|Tx\|_Y = \infty \right\} \neq \varnothing.</math> In fact, <math>R</math> is dense in <math>X.</math> The complement of <math>R</math> in <math>X</math> is the countable union of closed sets <math display="inline">\bigcup X_n.</math> By the argument used in proving the theorem, each <math>X_n</math> is [[nowhere dense]], i.e. the subset <math display="inline">\bigcup X_n</math> is {{em|of first category}}. Therefore <math>R</math> is the complement of a subset of first category in a Baire space. By definition of a Baire space, such sets (called {{em|[[Comeagre set|comeagre]]}} or {{em|residual sets}}) are dense. Such reasoning leads to the {{em|principle of condensation of singularities}}, which can be formulated as follows: {{math theorem | math_statement= Let <math>X</math> be a Banach space, <math>\left(Y_n\right)</math> a sequence of normed vector spaces, and for every <math>n,</math> let <math>F_n</math> an unbounded family in <math>L\left(X, Y_n\right).</math> Then the set <math display=block>R := \left\{x \in X \ : \ \text{ for all } n \in \N , \sup_{T \in F_n} \|Tx\|_{Y_n} = \infty\right\}</math> is a residual set, and thus dense in <math>X.</math> }} {{math proof| proof = The complement of <math>R</math> is the countable union <math display=block>\bigcup_{n,m} \left\{x \in X \ : \ \sup_{T \in F_n} \|Tx\|_{Y_n} \leq m\right\}</math> of sets of first category. Therefore, its residual set <math>R</math> is dense. }} ==Example: pointwise convergence of Fourier series== Let <math>\mathbb{T}</math> be the [[Circle group|circle]], and let <math>C(\mathbb{T})</math> be the Banach space of continuous functions on <math>\mathbb{T},</math> with the [[uniform norm]]. Using the uniform boundedness principle, one can show that there exists an element in <math>C(\mathbb{T})</math> for which the Fourier series does not converge pointwise. For <math>f \in C(\mathbb{T}),</math> its [[Fourier series]] is defined by <math display=block>\sum_{k \in \Z} \hat{f}(k) e^{ikx} = \sum_{k \in \Z} \frac{1}{2\pi} \left (\int_0 ^{2 \pi} f(t) e^{-ikt} dt \right) e^{ikx},</math> and the ''N''-th symmetric partial sum is <math display=block>S_N(f)(x) = \sum_{k=-N}^N \hat{f}(k) e^{ikx} = \frac{1}{2 \pi} \int_0^{2 \pi} f(t) D_N(x - t) \, dt,</math> where <math>D_N</math> is the <math>N</math>-th [[Dirichlet kernel]]. Fix <math>x \in \mathbb{T}</math> and consider the convergence of <math>\left\{S_N(f)(x)\right\}.</math> The functional <math>\varphi_{N,x} : C(\mathbb{T}) \to \Complex</math> defined by <math display=block>\varphi_{N, x}(f) = S_N(f)(x), \qquad f \in C(\mathbb{T}),</math> is bounded. The norm of <math>\varphi_{N,x},</math> in the dual of <math>C(\mathbb{T}),</math> is the norm of the signed measure <math>(2(2 \pi)^{-1} D_N(x - t) d t,</math> namely <math display=block>\left\|\varphi_{N,x}\right\| = \frac{1}{2 \pi} \int_0^{2 \pi} \left|D_N(x-t)\right| \, dt = \frac{1}{2 \pi} \int_0^{2 \pi} \left|D_N(s)\right| \, ds = \left\|D_N\right\|_{L^1(\mathbb{T})}.</math> It can be verified that <math display=block>\frac{1}{2 \pi} \int_0 ^{2 \pi} |D_N(t)| \, dt \geq \frac{1}{2\pi}\int_0^{2\pi} \frac{\left|\sin\left( (N + \tfrac{1}{2})t \right)\right|}{t/2} \, dt \to \infty.</math> So the collection <math>\left(\varphi_{N, x}\right)</math> is unbounded in <math>C(\mathbb{T})^{\ast},</math> the dual of <math>C(\mathbb{T}).</math> Therefore, by the uniform boundedness principle, for any <math>x \in \mathbb{T},</math> the set of continuous functions whose Fourier series diverges at <math>x</math> is dense in <math>C(\mathbb{T}).</math> More can be concluded by applying the principle of condensation of singularities. Let <math>\left(x_m\right)</math> be a dense sequence in <math>\mathbb{T}.</math> Define <math>\varphi_{N, x_m}</math> in the similar way as above. The principle of condensation of singularities then says that the set of continuous functions whose Fourier series diverges at each <math>x_m</math> is dense in <math>C(\mathbb{T})</math> (however, the Fourier series of a continuous function <math>f</math> converges to <math>f(x)</math> for almost every <math>x \in \mathbb{T},</math> by [[Carleson's theorem]]). ==Generalizations== In a [[topological vector space]] (TVS) <math>X,</math> "bounded subset" refers specifically to the notion of a [[Bounded set (topological vector space)|von Neumann bounded subset]]. If <math>X</math> happens to also be a normed or [[seminormed space]], say with [[Seminorm|(semi)norm]] <math>\|\cdot\|,</math> then a subset <math>B</math> is (von Neumann) bounded if and only if it is {{em|norm bounded}}, which by definition means <math display="inline">\sup_{b \in B} \|b\| < \infty.</math> ===Barrelled spaces=== {{Main|Barrelled space}} Attempts to find classes of [[locally convex topological vector space]]s on which the uniform boundedness principle holds eventually led to [[barrelled space]]s. That is, the least restrictive setting for the uniform boundedness principle is a barrelled space, where the following generalized version of the theorem holds {{harv|Bourbaki|1987|loc=Theorem III.2.1}}: {{math theorem |math_statement= Given a barrelled space <math>X</math> and a [[Locally convex topological vector space|locally convex space]] <math>Y,</math> then any family of pointwise bounded [[continuous linear mapping]]s from <math>X</math> to <math>Y</math> is [[equicontinuous]] (and even [[uniformly equicontinuous]]). Alternatively, the statement also holds whenever <math>X</math> is a [[Baire space]] and <math>Y</math> is a locally convex space.{{sfn|Shtern|2001}} }} ===Uniform boundedness in topological vector spaces=== {{Main|Uniformly bounded sets (topological vector space)}} A [[Family of sets|family]] <math>\mathcal{B}</math> of subsets of a [[topological vector space]] <math>Y</math> is said to be {{em|[[Uniformly bounded sets (topological vector space)|uniformly bounded]]}} in <math>Y,</math> if there exists some [[Bounded set (topological vector space)|bounded subset]] <math>D</math> of <math>Y</math> such that <math display=block>B \subseteq D \quad \text{ for every } B \in \mathcal{B},</math> which happens if and only if <math display=block>\bigcup_{B \in \mathcal{B}} B</math> is a bounded subset of <math>Y</math>; if <math>Y</math> is a [[normed space]] then this happens if and only if there exists some real <math>M \geq 0</math> such that <math display="inline">\sup_{\stackrel{b \in B}{B \in \mathcal{B}}} \|b\| \leq M.</math> In particular, if <math>H</math> is a family of maps from <math>X</math> to <math>Y</math> and if <math>C \subseteq X</math> then the family <math>\{h(C) : h \in H\}</math> is uniformly bounded in <math>Y</math> if and only if there exists some bounded subset <math>D</math> of <math>Y</math> such that <math>h(C) \subseteq D \text{ for all } h \in H,</math> which happens if and only if <math display=inline>H(C) := \bigcup_{h \in H} h(C)</math> is a bounded subset of <math>Y.</math> {{math theorem | name = Proposition{{sfn|Rudin|1991|pp=42−47}} | math_statement= Let <math>H \subseteq L(X, Y)</math> be a set of continuous linear operators between two [[topological vector space]]s <math>X</math> and <math>Y</math> and let <math>C \subseteq X</math> be any [[Bounded set (topological vector space)|bounded subset]] of <math>X.</math> Then the [[family of sets]] <math>\{h(C) : h \in H\}</math> is uniformly bounded in <math>Y</math> if any of the following conditions are satisfied: # <math>H</math> is equicontinuous. # <math>C</math> is a [[Convex set|convex]] [[Compact space|compact]] Hausdorff [[Subspace (topology)|subspace]] of <math>X</math> and for every <math>c \in C,</math> the orbit <math>H(c) := \{h(c) : h \in H\}</math> is a bounded subset of <math>Y.</math> }} ===Generalizations involving nonmeager subsets=== Although the notion of a [[nonmeager set]] is used in the following version of the uniform bounded principle, the domain <math>X</math> is {{em|not}} assumed to be a [[Baire space]]. {{math theorem | name = Theorem{{sfn|Rudin|1991|pp=42−47}} | math_statement= Let <math>H \subseteq L(X, Y)</math> be a set of [[continuous linear operator]]s between two [[topological vector space]]s <math>X</math> and <math>Y</math> (not necessarily [[Hausdorff space|Hausdorff]] or locally convex). For every <math>x \in X,</math> denote the [[Orbit (group theory)|orbit]] of <math>x</math> by <math display=block>H(x) := \{h(x) : h \in H\}</math> and let <math>B</math> denote the set of all <math>x \in X</math> whose orbit <math>H(x)</math> is a [[Bounded set (topological vector space)|bounded subset]] of <math>Y.</math> If <math>B</math> is of the [[second category]] (that is, nonmeager) in <math>X</math> then <math>B = X</math> and <math>H</math> is equicontinuous. }} Every proper vector subspace of a TVS <math>X</math> has an empty interior in <math>X.</math>{{sfn|Rudin|1991|p=46}} So in particular, every proper vector subspace that is closed is nowhere dense in <math>X</math> and thus of the first category (meager) in <math>X</math> (and the same is thus also true of all its subsets). Consequently, any vector subspace of a TVS <math>X</math> that is of the second category (nonmeager) in <math>X</math> must be a [[Dense set|dense subset]] of <math>X</math> (since otherwise its closure in <math>X</math> would a closed proper vector subspace of <math>X</math> and thus of the first category).{{sfn|Rudin|1991|p=46}} {{math proof | title = Proof{{sfn|Rudin|1991|pp=42−47}} | proof = {{em|Proof that <math>H</math> is equicontinuous:}} Let <math>W, V \subseteq Y</math> be [[Balanced set|balanced]] neighborhoods of the origin in <math>Y</math> satisfying <math>\overline{V} + \overline{V} \subseteq W.</math> It must be shown that there exists a neighborhood <math>N \subseteq X</math> of the origin in <math>X</math> such that <math>h(N) \subseteq W</math> for every <math>h \in H.</math> Let <math display=block>C ~:=~ \bigcap_{h \in H} h^{-1}\left(\overline{V}\right),</math> which is a closed subset of <math>X</math> (because it is an intersection of closed subsets) that for every <math>h \in H,</math> also satisfies <math>h(C) \subseteq \overline{V}</math> and <math display=block>h(C - C) ~=~ h(C) - h(C) ~\subseteq~ \overline{V} - \overline{V} ~=~ \overline{V} + \overline{V} ~\subseteq~ W</math> (as will be shown, the set <math>C - C</math> is in fact a neighborhood of the origin in <math>X</math> because the topological interior of <math>C</math> in <math>X</math> is not empty). If <math>b \in B</math> then <math>H(b)</math> being bounded in <math>Y</math> implies that there exists some integer <math>n \in \N</math> such that <math>H(b) \subseteq n V</math> so if <math>h \in H,</math> then <math>b ~\in~ h^{-1}\left(n V\right) ~=~ n h^{-1}(V).</math> Since <math>h \in H</math> was arbitrary, <math display=block>b ~\in~ \bigcap_{h \in H} nh^{-1}(V) ~=~ n \bigcap_{h \in H} h^{-1}(V) ~\subseteq~ n C.</math> This proves that <math display=block>B ~\subseteq~ \bigcup_{n \in \N} n C.</math> Because <math>B</math> is of the second category in <math>X,</math> the same must be true of at least one of the sets <math>n C</math> for some <math>n \in \N.</math> The map <math>X \to X</math> defined by <math display="inline">x \mapsto \frac{1}{n} x</math> is a ([[Surjective function|surjective]]) [[homeomorphism]], so the set <math display="inline">\frac{1}{n} (n C) = C</math> is necessarily of the second category in <math>X.</math> Because <math>C</math> is closed and of the second category in <math>X,</math> its [[topological interior]] in <math>X</math> is not empty. Pick <math>c \in \operatorname{Int}_X C.</math> Because the map <math>X \to X</math> defined by <math>x \mapsto c - x</math> is a homeomorphism, the set <math display=block>N ~:=~ c - \operatorname{Int}_X C ~=~ \operatorname{Int}_X (c - C)</math> is a neighborhood of <math>0 = c - c</math> in <math>X,</math> which implies that the same is true of its superset <math>C - C.</math> And so for every <math>h \in H,</math> <math display=block>h(N) ~\subseteq~ h(c - C) ~=~ h(c) - h(C) ~\subseteq~ \overline{V} - \overline{V} ~\subseteq~ W.</math> This proves that <math>H</math> is equicontinuous. Q.E.D. {{hr|1}} {{em|Proof that <math>B = X</math>:}} Because <math>H</math> is equicontinuous, if <math>S \subseteq X</math> is bounded in <math>X</math> then <math>H(S)</math> is uniformly bounded in <math>Y.</math> In particular, for any <math>x \in X,</math> because <math>S := \{x\}</math> is a bounded subset of <math>X,</math> <math>H(\{x\}) = H(x)</math> is a uniformly bounded subset of <math>Y.</math> Thus <math>B = X.</math> Q.E.D. }} ===Sequences of continuous linear maps=== The following theorem establishes conditions for the pointwise limit of a sequence of continuous linear maps to be itself continuous. {{math theorem | name = Theorem{{sfn|Rudin|1991|pp=45−46}} | math_statement= Suppose that <math>h_1, h_2, \ldots</math> is a sequence of continuous linear maps between two [[topological vector space]]s <math>X</math> and <math>Y.</math> # If the set <math>C</math> of all <math>x \in X</math> for which <math>h_1(x), h_2(x), \ldots</math> is a Cauchy sequence in <math>Y</math> is of the second category in <math>X,</math> then <math>C = X.</math> # If the set <math>L</math> of all <math>x \in X</math> at which the limit <math>h(x) := \lim_{n \to \infty} h_n(x)</math> exists in <math>Y</math> is of the second category in <math>X</math> and if <math>Y</math> is a [[Complete topological vector space|complete]] [[metrizable topological vector space]] (such as a [[Fréchet space]] or an [[F-space]]), then <math>L = X</math> and <math>h : X \to Y</math> is a continuous linear map. }} {{math theorem | name = Theorem{{sfn|Rudin|1991|p=46}} | math_statement= If <math>h_1, h_2, \ldots</math> is a sequence of continuous linear maps from an [[F-space]] <math>X</math> into a Hausdorff topological vector space <math>Y</math> such that for every <math>x \in X,</math> the limit <math display=block>h(x) ~:=~ \lim_{n \to \infty} h_n(x)</math> exists in <math>Y,</math> then <math>h : X \to Y</math> is a continuous linear map and the maps <math>h, h_1, h_2, \ldots</math> are equicontinuous. }} If in addition the domain is a [[Banach space]] and the codomain is a [[normed space]] then <math>\|h\| \leq \liminf_{n \to \infty} \left\|h_n\right\| < \infty.</math> ====Complete metrizable domain==== {{harvtxt|Dieudonné|1970}} proves a weaker form of this theorem with [[Fréchet space]]s rather than the usual Banach spaces. {{math theorem| name = Theorem{{sfn|Rudin|1991|pp=42−47}} | math_statement= Let <math>H \subseteq L(X, Y)</math> be a set of continuous linear operators from a [[Complete topological vector space|complete]] [[metrizable topological vector space]] <math>X</math> (such as a [[Fréchet space]] or an [[F-space]]) into a [[Hausdorff space|Hausdorff]] [[topological vector space]] <math>Y.</math> If for every <math>x \in X,</math> the [[Orbit (group theory)|orbit]] <math display=block>H(x) := \{h(x) : h \in H\}</math> is a [[Bounded set (topological vector space)|bounded subset]] of <math>Y</math> then <math>H</math> is equicontinuous. So in particular, if <math>Y</math> is also a [[normed space]] and if <math display=block>\sup_{h \in H} \|h(x)\| < \infty \quad \text{ for every } x \in X,</math> then <math>H</math> is equicontinuous. }} ==See also== * {{annotated link|Barrelled space}} * {{annotated link|Ursescu theorem}} ==Notes== {{reflist|group=note}} {{reflist|group=proof}} ==Citations== {{reflist}} ==Bibliography== * {{citation|last1=Banach |first1=Stefan |author-link1=Stefan Banach | last2=Steinhaus|first2=Hugo |author-link2=Hugo Steinhaus | url=http://matwbn.icm.edu.pl/ksiazki/fm/fm9/fm918.pdf |title=Sur le principe de la condensation de singularités |journal=[[Fundamenta Mathematicae]]| volume=9| pages=50–61 |year=1927 |doi=10.4064/fm-9-1-50-61 |doi-access=free}}. {{in lang|fr}} * {{Banach Théorie des Opérations Linéaires}} <!-- {{sfn|Banach|1932|p=}} --> * {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}} <!-- {{sfn|Bourbaki|1987|p=}} --> * {{citation|last=Dieudonné|first=Jean |author-link=Jean Dieudonné| title=Treatise on analysis, Volume 2| year=1970| publisher=Academic Press}}. * {{Husain Khaleelulla Barrelledness in Topological and Ordered Vector Spaces}} <!-- {{sfn|Husain|Khaleelulla|1978|p=}} --> * {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!-- {{sfn|Khaleelulla|1982|p=}} --> * {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!-- {{sfn|Narici|Beckenstein|2011|p=}} --> * {{citation|last=Rudin|first=Walter |author-link=Walter Rudin|title=Real and complex analysis|publisher=McGraw-Hill| year=1966}}. * {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn|Rudin|1991|p=}} --> * {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn|Schaefer|Wolff|1999|p=}} --> * {{Schechter Handbook of Analysis and Its Foundations}} <!-- {{sfn|Schechter|1996|p=}} --> * {{springer|Banach–Steinhaus theorem| first=A.I.|last=Shtern| year=2001| id=b/b015200}}. * {{citation| last=Sokal| first=Alan| author-link=Alan Sokal| title=A really simple elementary proof of the uniform boundedness theorem| journal=[[Amer. Math. Monthly]]| volume=118| pages=450–452| year=2011| issue=5| arxiv=1005.1585| doi=10.4169/amer.math.monthly.118.05.450| s2cid=41853641}}. * {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} --> * {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} <!-- {{sfn|Wilansky|2013|p=}} --> {{Functional analysis}} {{Topological vector spaces}} {{Boundedness and bornology}} [[Category:Articles containing proofs]] [[Category:Functional analysis]] [[Category:Mathematical principles]] [[Category:Theorems in functional analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Banach Théorie des Opérations Linéaires
(
edit
)
Template:Boundedness and bornology
(
edit
)
Template:Bourbaki Topological Vector Spaces Part 1 Chapters 1–5
(
edit
)
Template:Citation
(
edit
)
Template:Em
(
edit
)
Template:For-multi
(
edit
)
Template:Functional analysis
(
edit
)
Template:Harv
(
edit
)
Template:Harvtxt
(
edit
)
Template:Husain Khaleelulla Barrelledness in Topological and Ordered Vector Spaces
(
edit
)
Template:In lang
(
edit
)
Template:Khaleelulla Counterexamples in Topological Vector Spaces
(
edit
)
Template:Main
(
edit
)
Template:Math proof
(
edit
)
Template:Math theorem
(
edit
)
Template:Narici Beckenstein Topological Vector Spaces
(
edit
)
Template:Reflist
(
edit
)
Template:Rudin Walter Functional Analysis
(
edit
)
Template:Schaefer Wolff Topological Vector Spaces
(
edit
)
Template:Schechter Handbook of Analysis and Its Foundations
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Topological vector spaces
(
edit
)
Template:Trèves François Topological vector spaces, distributions and kernels
(
edit
)
Template:Wilansky Modern Methods in Topological Vector Spaces
(
edit
)