Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vector potential
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical concept in vector calculus}} {{About|the general concept in the mathematical theory of vector fields|the vector potential in electromagnetism|Magnetic vector potential|the vector potential in fluid mechanics|Stream function}} In [[vector calculus]], a '''vector potential''' is a [[vector field]] whose [[Curl (mathematics)|curl]] is a given vector field. This is analogous to a ''[[scalar potential]]'', which is a scalar field whose [[gradient]] is a given vector field. Formally, given a vector field <math>\mathbf{v}</math>, a ''vector potential'' is a <math>C^2</math> vector field <math>\mathbf{A}</math> such that <math display="block"> \mathbf{v} = \nabla \times \mathbf{A}. </math> ==Consequence== If a vector field <math>\mathbf{v}</math> admits a vector potential <math>\mathbf{A}</math>, then from the equality <math display="block">\nabla \cdot (\nabla \times \mathbf{A}) = 0</math> ([[divergence]] of the [[Curl (mathematics)|curl]] is zero) one obtains <math display="block">\nabla \cdot \mathbf{v} = \nabla \cdot (\nabla \times \mathbf{A}) = 0,</math> which implies that <math>\mathbf{v}</math> must be a [[solenoidal vector field]]. ==Theorem== Let <math display="block">\mathbf{v} : \R^3 \to \R^3 </math> be a [[solenoidal vector field]] which is twice [[smooth function|continuously differentiable]]. Assume that <math>\mathbf{v}(\mathbf{x})</math> decreases at least as fast as <math> 1/\|\mathbf{x}\| </math> for <math> \| \mathbf{x}\| \to \infty </math>. Define <math display="block"> \mathbf{A} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\mathbb R^3} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y} </math> where <math>\nabla_y \times</math> denotes curl with respect to variable <math>\mathbf{y}</math>. Then <math>\mathbf{A}</math> is a vector potential for <math>\mathbf{v}</math>. That is, <math display="block">\nabla \times \mathbf{A} =\mathbf{v}. </math> The integral domain can be restricted to any simply connected region <math>\mathbf{\Omega}</math>. That is, <math>\mathbf{A'}</math> also is a vector potential of <math>\mathbf{v}</math>, where <math display="block"> \mathbf{A'} (\mathbf{x}) = \frac{1}{4 \pi} \int_{\Omega} \frac{ \nabla_y \times \mathbf{v} (\mathbf{y})}{\left\|\mathbf{x} -\mathbf{y} \right\|} \, d^3\mathbf{y}. </math> A generalization of this theorem is the [[Helmholtz decomposition]] theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and an [[irrotational vector field]]. By [[analogy]] with the [[Biot-Savart law]], <math>\mathbf{A''}(\mathbf{x})</math> also qualifies as a vector potential for <math>\mathbf{v}</math>, where :<math>\mathbf{A''}(\mathbf{x}) =\int_\Omega \frac{\mathbf{v}(\mathbf{y}) \times (\mathbf{x} - \mathbf{y})}{4 \pi |\mathbf{x} - \mathbf{y}|^3} d^3 \mathbf{y}</math>. Substituting <math>\mathbf{j}</math> ([[current density]]) for <math>\mathbf{v}</math> and <math>\mathbf{H}</math> ([[H-field]]) for <math>\mathbf{A}</math>, yields the Biot-Savart law. Let <math>\mathbf{\Omega}</math> be a [[star domain]] centered at the point <math>\mathbf{p}</math>, where <math>\mathbf{p}\in \R^3</math>. Applying [[Poincaré's lemma]] for [[differential forms]] to vector fields, then <math>\mathbf{A'''}(\mathbf{x})</math> also is a vector potential for <math>\mathbf{v}</math>, where <math>\mathbf{A'''}(\mathbf{x}) =\int_0^1 s ((\mathbf{x}-\mathbf{p})\times ( \mathbf{v}( s \mathbf{x} + (1-s) \mathbf{p} ))\ ds </math> ==Nonuniqueness== The vector potential admitted by a solenoidal field is not unique. If <math>\mathbf{A}</math> is a vector potential for <math>\mathbf{v}</math>, then so is <math display="block"> \mathbf{A} + \nabla f, </math> where <math>f</math> is any continuously differentiable scalar function. This follows from the fact that the curl of the gradient is zero. This nonuniqueness leads to a degree of freedom in the formulation of electrodynamics, or gauge freedom, and requires [[Gauge fixing|choosing a gauge]]. == See also == * [[Fundamental theorem of vector calculus]] * [[Magnetic vector potential]] * [[Solenoidal vector field]] * [[Closed and exact differential forms#Application in electrodynamics|Closed and Exact Differential Forms]] == References == * ''Fundamentals of Engineering Electromagnetics'' by David K. Cheng, Addison-Wesley, 1993. {{Authority control}} [[Category:Concepts in physics]] [[Category:Potentials]] [[Category:Vector calculus]] [[Category:Vector physical quantities]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Authority control
(
edit
)
Template:Short description
(
edit
)