Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Very-small-aperture terminal
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Satellite communication system with small dish antenna}} {{redirect|VSAT|the internet company that trades under this ticker symbol|Viasat (American company)}} [[File:Parabolic-antenna-SHF-updown.jpg|thumb|A 2.5 m [[Parabolic antenna|parabolic]] [[Satellite dish|dish]] antenna for bidirectional [[satellite Internet access]] ]] A '''very-small-aperture terminal''' ('''VSAT''')<ref name="YczZO">{{Cite book|url=https://books.google.com/books?id=MWuXmf4V4NwC&q=%22Very-small-aperture+terminal%22|title=VSATs: Very Small Aperture Terminals|last=Everett|first=John|date=1992|publisher=IET|isbn=9780863412004|language=en}}</ref> is a two-way [[satellite]] [[ground station]] with a [[satellite dish|dish antenna]] that is smaller than 3.8 meters. The majority of VSAT antennas range from 75 cm to 1.2 m. [[Bit rate]]s, in most cases, range from 4 kbit/s to 16 Mbit/s. VSATs access satellites in [[geosynchronous orbit]] or [[geostationary orbit]] to relay data from small remote Earth stations (terminals) to other terminals (in [[mesh networking|mesh]] [[Network topology|topology]]) or master Earth station "hubs" (in [[star topology]]). VSATs are used to transmit [[narrowband]] data (e.g., [[point-of-sale]] transactions using credit cards, polling or [[RFID]] data, or [[SCADA]]), or [[broadband]] data (for the provision of [[satellite Internet access]] to remote locations, [[VoIP]] or video). VSATs are also used for transportable, on-the-move (utilising [[phased array]] antennas) or mobile [[ocean|maritime]] communications. ==History== The concept of the [[geostationary orbit]] was originated by Russian theorist [[Konstantin Tsiolkovsky]], who wrote articles on [[space exploration|space travel]] around the beginning of the 20th century. In the 1920s, [[Hermann Oberth]] and [[Herman Potocnik]], also known as Herman Noordung, described an orbit at an altitude of {{convert|35,900|km|miles}} whose [[Orbital period|period]] exactly matched the Earth's rotational period, making it appear to hover over a fixed point on the Earth's [[equator]].<ref name="yBz0r">[http://celestrak.com/columns/v04n07/ CelesTrak: "Basics of the Geostationary Orbit"<!-- Bot generated title -->]</ref> [[Arthur C. Clarke|Arthur C. Clarke's]] October 1945 ''[[Wireless World]]'' article (called "Extra-Terrestrial Relays: Can Rocket Stations Give World-wide Radio Coverage?") discussed the necessary [[Orbital elements|orbital characteristics]] for a geostationary orbit and the frequencies and power needed for communication. Live satellite communication was developed in the 1960s by [[NASA]], which launched [[Syncom]] 1–3 satellites.<ref name="R6duG">[http://www.nasa.gov/multimedia/imagegallery/image_feature_388.html NASA – The First Geosynchronous Satellite<!-- Bot generated title -->]</ref> Syncom 3 transmitted live coverage of the [[1964 Summer Olympics|1964 Olympics]] in [[Japan]] to viewers in the [[United States]] and [[Europe]]. On April 6, 1965, the first commercial satellite was launched into space, [[Intelsat I]], nicknamed Early Bird.<ref name="fSk06">[http://www.nasa.gov/offices/oce/appel/ask-academy/issues/ask-oce/AO_1-7_SF_history.html Academy of Program/Project and Engineering Leadership (APPEL) | NASA<!-- Bot generated title -->] {{webarchive |url=https://web.archive.org/web/20110629025241/http://www.nasa.gov/offices/oce/appel/ask-academy/issues/ask-oce/AO_1-7_SF_history.html |date=June 29, 2011}}</ref> The first commercial VSATs were C band (6 GHz) receive-only systems by Equatorial Communications using [[spread spectrum]] technology. More than 30,000 60 cm antenna systems were sold in the early 1980s. Equatorial later developed a C band (4/6 GHz) two-way system using 1 m x 0.5 m antennas and sold about 10,000 units in 1984–85. In the early 1980s, LINKABIT (the predecessor to Qualcomm and ViaSat) developed the world's first Ku-band (12–14 GHz) VSAT for Schlumberger to provide network connectivity for oil field [[Oil platform|drilling]] and exploration units. LINKABIT which had become part of M/A-COM went on to develop {{Ku band}} VSATs for enterprise customers such as [[Walmart]], [[Holiday Inn]], [[Chrysler]], and [[General Motors]]. These enterprise terminals made up the vast majority of sites for the next 20 years for two-way data or telephony applications. A large VSAT network, with more than 12,000 sites, was deployed by [[Spacenet]] and MCI for the [[U.S. Postal Service]] in the 1980s. {{As of|2015}}, the largest VSAT Ku-band network containing over 100,000 VSATs was deployed by and is operated by [[Hughes Communications]] for [[lottery]] applications.<ref name="zVtoz">{{Cite web |url=https://www.hughes.com/sites/hughes.com/files/2017-04/Lottery-System_H55667_HR.pdf |title=Hughes Lottery System Solutions, Hughes White Paper |access-date=2023-05-22 }}</ref> In 2005, WildBlue (now ViaSat) started deploying VSAT networks deploying Ka-band. ViaSat launched the highest capacity satellite ever, ViaSat-1, in 2011 to expand the WildBlue base under its Exede brand. In 2007, [[Hughes Communications]] started deploying {{Ka band}} VSAT sites for consumers under its HughesNet brand on the Spaceway 3 satellite and later in 2012 on its [[EchoStar XVII|EchoStar XVII/Jupiter 1]] satellite. By September 2014, Hughes became the first Satellite Internet Provider to surpass one million active terminals.<ref name="swX8H">{{cite web |url=http://www.hughes.com/resources/hughes-becomes-first-satellite-internet-provider-to-surpass-one-million-active-users-1 |title=Hughes Becomes First Satellite Internet Provider to Surpass One Million Active Users {{!}} Hughes |website=www.hughes.com |url-status=dead |archive-url=https://web.archive.org/web/20140913233513/http://www.hughes.com/resources/hughes-becomes-first-satellite-internet-provider-to-surpass-one-million-active-users-1 |archive-date=2014-09-13}} </ref> ==Configurations== Most VSAT networks are configured in one of these [[network topology|topologies]]: * A [[star topology]], using a central uplink site, such as a [[network operations center]] (NOC), to transport data back and forth to each VSAT via satellite, * A [[mesh topology]], where each VSAT relays data via satellite to another terminal by acting as a hub, minimizing the need for a centralized uplink site, * A combination of both star and mesh topologies. Some VSAT networks are configured by having several centralized uplink sites (and VSAT stemming from it) connected in a multi-star topology with each star (and each terminal in each star) connected to each other in a mesh topology. Others configured in only a single-star topology sometimes will have each terminal connected to each other as well, resulting in each terminal acting as a central hub. These configurations are utilized to minimize the overall cost of the network, and to alleviate the amount of data that has to be relayed through a central uplink site (or sites) of a star or multi-star network. ==Future applications== Advances in technology have dramatically improved the [[price–performance ratio]] of [[fixed satellite service]] (FSS) over the past five years. New VSAT systems are coming online using {{Ka band}} technology that promise higher data rates for lower costs. FSS systems currently in orbit have a huge capacity with a relatively low price structure. FSS systems provide various applications for subscribers, including: [[telephony]], [[fax]], [[television]], high-speed [[data communication]] services, Internet access, [[satellite news gathering]] (SNG), [[Digital Audio Broadcasting]] (DAB) and others. These systems provide high-quality service because they create efficient communication systems for both residential and business users. ==Constituent parts of a VSAT configuration== * [[Antenna (radio)|Antenna]] * [[Block upconverter]] (BUC) * [[Low-noise block downconverter]] (LNB) * [[Orthomode transducer]] (OMT) * Interfacility link cable (IFL) * [[Satellite Internet access#Indoor unit (IDU)|Indoor unit (IDU)]] All the outdoor parts on the dish are collectively called the ODU (Outdoor Unit), i.e., OMT to split signal between BUC and LNB. The IDU is effectively a modem, usually with Ethernet port and 2 x F-connectors for the coax to BUC (Transmit) and from LNB (Receive). The Astra2Connect has an all-in-one OMT/BUC/LNA that looks like a Quad LNB in shape and size which mounts on a regular TV satellite mount. As a consequence it is only 500 mW compared with the normal 2W, thus is poorer in rain. Skylogic's [[Tooway]] system also uses an integrated OMT/BUC/LNB assembly called a [[transmit and receive integrated assembly]] (TRIA), which is 3W. For large antennas there are also mechanical struts that prevent them to move due to strong winds, losing the pointing and causing service interruption == Maritime VSAT == A maritime VSAT has features that allow it to be operated on a ship at sea. A ship that is underway is in continuous motion in all axes. The antenna part of a marine VSAT system must be stabilized with respect to the horizon and [[true north]] as the ship moves beneath it. Motors and sensors are used to keep the antenna pointed accurately at the satellite. This enables it to transmit to and receive from the satellite while minimising losses and interference with adjacent satellites. New technology is emerging that will allow a solid state device (flat panel) to steer an antenna electronically without moving parts. === Technology === Initially, stabilized satellite antennas were used on ships for reception of television signals. One of the first companies to manufacture stabilized VSAT antennas was SeaTel of [[Concord, California|Concord]], [[California]], which launched its first stabilized antenna in 1978. SeaTel dominates the supply of two-way VSAT stabilised antenna systems to the marine industry with almost 72% of the market in 2007 compared to Orbit's 17.6%.<ref name="Uy79P">[http://www.comsys.co.uk/vm1e_mn.htm The Comsys Maritime VSAT Report] {{webarchive |url=https://web.archive.org/web/20100523033524/http://www.comsys.co.uk/vm1e_mn.htm |date=May 23, 2010}}</ref> Initially, maritime VSAT was using [[single channel per carrier]] technology, which suited large-volume users like oil drilling rigs and [[oil platforms]] and large fleets of ships from one shipowner sailing within one or few [[Footprint (satellite)|satellite footprints]]. This changed when the company {{Proper name|iDirect}} launched its IP-based [[time-division multiple access]] technology that dynamically allocated bandwidth to each ship for shared bandwidth, lowering the entry-level cost for getting maritime VSAT installed, which turned out to be of key importance to small to mid-sized fleets, and thus to the market acceptance of VSAT. ===Market=== According to the Maritime VSAT report issued by the Comsys Group, the market for stabilised maritime VSAT services (not including oil and gas rigs) reached more than $400 million in 2007.<ref name="Uy79P" /> In 2010, [[Comsys|COMSYS]] released its "2nd Maritime VSAT Report", where the market estimate had increased to $590 million in 2009 with predictions for 2010 at $850 million. The estimated size of the market in terms of vessels eligible to get VSAT was in this report set to in excess of 42,000 with just over 34,000 to go. The major companies market share in terms of number of vessels in service were in 2009 (2007 in parentheses) according to these reports: Vizada: 17.6% (26.0%), Ship Equip: 11.0% (10.7%), Cap Rock 2.8% (2.9%), MTN 7.5% (6.4%), Stratos - % (3.6%), KVH 5.4% (- %) Elektrikom 4.9% (3.2%), Intelsat 3.4% (- %), Eutelsat 3.1%, NSSL 3.1%, Radio Holland 3.0%, Telemar 3.0%, DTS 2.6% and others accounted for 32.6% (27.7%). Many of the major providers have branded their maritime VSAT offerings such that [[Vizada]] offers its service through the Marlink division and the SeaLink and WaveCall products, OmniAccess, through their BroadBEAM<ref name="2yUap">[http://www.satnews.com/story.php?number=205261551 iDirect... Evolution Makes Its Way To OmniAccess (SATCOM)] / Sat Magazine, January 2011</ref> products and Ship Equip calls its offering [[Sevsat]].<ref name="jdCNM">[http://www.satmagazine.com/story.php?number=606155997 The Maritime Market: VSAT Rules] / Sat Magazine, December 2008</ref> VSAT Maritime Connectivity Service Providers Market Shares Global - Revenues (2018 & 2019):<ref>[https://www.thedigitalship.com/news/maritime-satellite-communications/item/6826-marlink-remains-largest-retail-vsat-service-provider-in-2019 VSAT Maritime Connectivity Service Providers Market Shares Global Global - S Revenues (2018 & 2019)]</ref> # Marlink 23.9% # Speedcast 15.0% # Inmarsat 11.3% # KVH Industries 8.8% # Global Eagle 7.6% # ITC Global 6.6% # RigNet 5.9% # NSSLGlobal 5.2% # Navarino 4.3% # Satcom Global 2.7% ==See also== * [[Satellite modem]] ==References== {{Reflist}} {{Satcomm|state=uncollapsed}} {{Telecommunications}} {{Authority control}} [[Category:Telecommunications equipment]] [[Category:Satellite Internet access]] [[Category:Ground stations]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:As of
(
edit
)
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Convert
(
edit
)
Template:Ka band
(
edit
)
Template:Ku band
(
edit
)
Template:Proper name
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Satcomm
(
edit
)
Template:Short description
(
edit
)
Template:Telecommunications
(
edit
)
Template:Webarchive
(
edit
)