Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vieta's formulas
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Relating coefficients and roots of a polynomial}} {{For|a method for computing {{pi}}|Viète's formula}} [[File:Francois Viete.jpeg|thumb|[[François Viète]]]] In [[mathematics]], '''Vieta's formulas''' relate the [[coefficient]]s of a [[polynomial]] to sums and products of its [[Root of a function|roots]]. They are named after [[François Viète]] (1540-1603), more commonly referred to by the Latinised form of his name, "Franciscus Vieta." ==Basic formulas== Any general polynomial of [[degree of a polynomial|degree]] ''n'' <math display="block">P(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0</math> (with the coefficients being [[real number|real]] or [[complex number|complex]] numbers and {{math|''a''<sub>''n''</sub> ≠ 0}}) has {{math|''n''}} (not necessarily distinct) complex roots {{math|''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r''<sub>''n''</sub>}} by the [[fundamental theorem of algebra]]. Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots {{math|''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r''<sub>''n''</sub>}} as follows: {{NumBlk||<math display="block">\begin{cases} r_1 + r_2 + \dots + r_{n-1} + r_n = -\dfrac{a_{n-1}}{a_n} \\[1ex] (r_1 r_2 + r_1 r_3 + \cdots + r_1 r_n) + (r_2r_3 + r_2r_4+\cdots + r_2r_n)+\cdots + r_{n-1}r_n = \dfrac{a_{n-2}}{a_{n}} \\[1ex] {} \quad \vdots \\[1ex] r_1 r_2 \cdots r_n = (-1)^n \dfrac{a_0}{a_n}. \end{cases}</math>|{{EquationRef|<nowiki>*</nowiki>}}}} Vieta's formulas can equivalently be written as <math display="block">\sum_{1\le i_1 < i_2 < \cdots < i_k\le n} \left(\prod_{j = 1}^k r_{i_j}\right)=(-1)^k\frac{a_{n-k}}{a_n}</math> for {{math|''k'' {{=}} 1, 2, ..., ''n''}} (the indices {{math|''i''<sub>''k''</sub>}} are sorted in increasing order to ensure each product of {{math|''k''}} roots is used exactly once). The left-hand sides of Vieta's formulas are the [[elementary symmetric polynomial]]s of the roots. Vieta's system {{EquationNote|*|(*)}} can be solved by [[Newton's method]] through an explicit simple iterative formula, the [[Durand-Kerner method]]. ==Generalization to rings== Vieta's formulas are frequently used with polynomials with coefficients in any [[integral domain]] {{mvar|R}}. Then, the quotients <math>a_i/a_n</math> belong to the [[field of fractions]] of {{mvar|R}} (and possibly are in {{mvar|R}} itself if <math>a_n</math> happens to be [[unit (ring theory)|invertible]] in {{mvar|R}}) and the roots <math>r_i</math> are taken in an [[algebraically closed field|algebraically closed]] extension. Typically, {{mvar|R}} is the [[ring (mathematics)|ring]] of the [[integer]]s, the field of fractions is the [[field (mathematics)|field]] of the [[rational number]]s and the algebraically closed field is the field of the [[complex number]]s. Vieta's formulas are then useful because they provide relations between the roots without having to compute them. For polynomials over a [[commutative ring]] that is not an integral domain, Vieta's formulas are only valid when <math>a_n</math> is not a [[zero-divisor]] and <math>P(x)</math> factors as <math>a_n(x-r_1)(x-r_2)\dots(x-r_n)</math>. For example, in the ring of the integers [[Modular arithmetic|modulo]] 8, the [[quadratic polynomial]] <math>P(x) = x^2-1</math> has four roots: 1, 3, 5, and 7. Vieta's formulas are not true if, say, <math>r_1=1</math> and <math>r_2=3</math>, because <math>P(x)\neq (x-1)(x-3)</math>. However, <math>P(x)</math> does factor as <math>(x-1)(x-7)</math> and also as <math>(x-3)(x-5)</math>, and Vieta's formulas hold if we set either <math>r_1=1</math> and <math>r_2=7</math> or <math>r_1=3</math> and <math>r_2=5</math>. ==Example== Vieta's formulas applied to [[quadratic polynomial|quadratic]] and [[cubic polynomial|cubic]] polynomials: The roots <math>r_1, r_2</math> of the quadratic polynomial <math>P(x) = ax^2 + bx + c</math> satisfy <math display="block"> r_1 + r_2 = -\frac{b}{a}, \quad r_1 r_2 = \frac{c}{a}.</math> The first of these equations can be used to find the minimum (or maximum) of {{math|''P''}}; see {{slink|Quadratic equation|Vieta's formulas}}. The roots <math>r_1, r_2, r_3</math> of the cubic polynomial <math>P(x) = ax^3 + bx^2 + cx + d</math> satisfy <math display="block"> r_1 + r_2 + r_3 = -\frac{b}{a}, \quad r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{c}{a}, \quad r_1 r_2 r_3 = -\frac{d}{a}.</math> ==Proof== === Direct proof === Vieta's formulas can be [[mathematical proof|proved]] by considering the equality <math display="block">a_n x^n + a_{n-1}x^{n-1} +\cdots + a_1 x+ a_0 = a_n (x-r_1) (x-r_2) \cdots (x-r_n)</math> (which is true since <math>r_1, r_2, \dots, r_n</math> are all the roots of this polynomial), expanding the products in the right-hand side, and equating the coefficients of each power of <math>x</math> between the two members of the equation. Formally, if one expands <math>(x-r_1) (x-r_2) \cdots (x-r_n)</math> and regroup the terms by their degree in {{tmath|x}}, one gets :<math>\sum_{k=0}^n (-1)^{n-k}x^k \left(\sum_{\stackrel{(\forall i)\; b_i\in\{0,1\}}{b_1+\cdots+b_n=n-k}} r_1^{b_1}\cdots r_n^{b_n}\right),</math> where the inner sum is exactly the {{tmath|k}}th elementary symmetric function As an example, consider the quadratic <math display=block>f(x) = a_2x^2 + a_1x + a_0 = a_2(x - r_1)(x - r_2) = a_2(x^2 - x(r_1 + r_2) + r_1 r_2).</math> Comparing identical powers of <math>x</math>, we find <math>a_2=a_2</math>, <math>a_1=-a_2 (r_1+r_2) </math> and <math> a_0 = a_2 (r_1r_2) </math>, with which we can for example identify <math> r_1+r_2 = - a_1/a_2 </math> and <math> r_1r_2 = a_0/a_2 </math>, which are Vieta's formula's for <math>n=2</math>. === Proof by mathematical induction === Vieta's formulas can also be proven by [[Mathematical induction|induction]] as shown below. '''Inductive hypothesis:''' Let <math>{P(x)}</math> be polynomial of degree <math>n</math>, with complex roots <math>{r_1},{r_2},{\dots},{r_n}</math> and complex coefficients <math>a_0,a_1,\dots,a_n</math> where <math>{ a_n} \neq 0</math>. Then the inductive hypothesis is that<math display="block">{P(x)} = {a_n}{x^n}+{{a_{n-1}}{x^{n-1}}}+{\cdots}+{{a_{1}}{x}}+{{a}_{0}} = {{a_n}{x^{n}}}-{a_n}{({r_1}+{r_2}+{\cdots}+{r_n}){x^{n-1}}}+{\cdots}+ {{(-1)^{n}}{ (a_n)}{({r_1}{r_2}{\cdots}{r_n})}}</math> '''Base case,''' <math>n = 2 </math> '''(quadratic):''' Let <math>{a_2},{a_1}</math> be coefficients of the quadratic and <math>a_0 </math>be the constant term. Similarly, let <math>{r_1},{r_2}</math> be the roots of the quadratic:<math display="block">{a_2 x^2}+{a_1 x} + a_0 = {a_2}{(x-r_1)(x-r_2)}</math>Expand the right side using [[distributive property]]:<math display="block">{a_2 x^2}+{a_1 x} + a_0 = {a_2}{({x^2}-{r_1x}-{r_2x}+{r_1}{r_2})}</math>Collect [[like terms]]:<math display="block">{a_2 x^2}+{a_1 x} + a_0 = {a_2}{({x^2}-{({r_1}+{r_2}){x}}+{r_1}{r_2})}</math>Apply distributive property again:<math display="block">{a_2 x^2}+{a_1 x} + a_0 = {{a_2}{x^2}-{{a_2}({r_1}+{r_2}){x}}+{a_2}{({r_1}{r_2})}}</math>The inductive hypothesis has now been proven true for <math>n = 2</math>. '''Induction step:''' Assuming the inductive hypothesis holds true for all <math>n\geqslant 2</math>, it must be true for all <math>n+1 </math>.<math display="block">{P(x)} = {a_{n+1}}{x^{n+1}}+{{a_{n}}{x^{n}}}+{\cdots}+{{a_{1}}{x}}+{{a}_{0}}</math>By the [[factor theorem]], <math>{(x-r_{n+1})}</math> can be factored out of <math>P(x) </math> leaving a 0 remainder. Note that the roots of the polynomial in the square brackets are <math>r_1,r_2,\cdots,r_n</math>:<math display="block">{P(x)} = {(x-r_{n+1})} {[{\frac{{a_ {n+ 1}}{x^ {n+1}}+{{a_{n}}{x^{n}}}+{\cdots}+{{a_{1}}{x}}+{{a}_{0}}}{x- r_{n +1}}}]}</math>Factor out <math>a_{n+1}</math>, the leading coefficient <math>P(x)</math>, from the polynomial in the square brackets:<math display="block">{P(x)} ={(a_{n+{1}})}{(x-r_{n+1})} {[{\frac{{x^ {n+1}}+ {\frac{{a_{n}} {x^{n}}}{(a_{n+{1}})}}+{\cdots}+{\frac {a_{1}}{(a_{n+{1}})} {x}}+ {{\frac{a_0}{{(a_{n+{1}})}}}}} {x- r_{n +1}}}]}</math>For simplicity sake, allow the coefficients and constant of polynomial be denoted as <math>\zeta</math>:<math display="block">P(x) = {(a_ {n+1})}{(x-r_ {n+1})}{[{x^n}+{\zeta_{n-1}x^{n-1}}+{\cdots}+{\zeta_0}]}</math>Using the inductive hypothesis, the polynomial in the square brackets can be rewritten as:<math display="block">P(x) = {(a_ {n+1})} {(x-r_ {n+1})} {[{{x^{n}}}-{({r_1}+{r_2}+{\cdots}+{r_n}){x^{n-1}}}+{\cdots}+ {{(-1)^{n}}{({r_1}{r_2}{\cdots}{r_n})}}]}</math>Using distributive property:<math display="block">P(x) = {(a_ {n+1})}{({x} {[{{x^{n}}}-{({r_1}+{r_2}+{\cdots}+{r_n}){x^{n-1}}}+{\cdots}+ {{(-1)^{n}}{({r_1}{r_2}{\cdots}{r_n})}}]} {- r_ {n+1}} {[{{x^{n}}}-{({r_1}+{r_2}+{\cdots}+{r_n}){x^{n-1}}}+{\cdots}+ {{(-1)^{n}}{({r_1}{r_2}{\cdots}{r_n})}}]} )}</math>After expanding and collecting like terms:<math display="block">\begin{align} {P(x)} = {{a_{n+1}}{x^{n+1}}}-{a_{n+1}}{({r_1}+{r_2}+{\cdots}+{r_n}+{r_{n+1}}){x^{n}}}+{\cdots}+ {{(-1)^{n+1}}{({r_1}{r_2}{\cdots}{r_n}{r_{n+1}})}} \\ \end{align}</math>The inductive hypothesis holds true for <math>n+1</math>, therefore it must be true <math>\forall n \in \mathbb{N}</math> '''Conclusion:'''<math display="block">{a_ n}{x^n}+{{a_{n-1}}{x^{n-1}}}+{\cdots}+{{a_{1}}{x}}+{{a}_{0}} = {{a_n}{x^{n}}}-{a_n}{({r_1}+{r_2}+{\cdots}+{r_n}){x^{n-1}}}+{\cdots}+ {{(-1)^{n}}{({r_1}{r_2}{\cdots}{r_n})}}</math>By dividing both sides by <math>a_{n}</math>, it proves the Vieta's formulas true. == History == A method similar to Vieta's formula can be found in the work of the 12th century [[Islamic mathematician]] [[Sharaf al-Din al-Tusi]]. It is plausible that algebraic advancements made by other Islamic mathematician such as [[Omar Khayyam]], [[Nasir al-Din al-Tusi|al-tusi]], and [[Jamshid al-Kashi|al-Kashi]] influenced 16th-century algebraists, with Vieta being the most prominent among them.<ref>{{Cite journal |last=Ypma |first=Tjalling J. |date=1995 |title=Historical Development of the Newton-Raphson Method |url=https://www.jstor.org/stable/2132904 |journal=SIAM Review |volume=37 |issue=4 |pages=534 |doi=10.1137/1037125 |jstor=2132904 |issn=0036-1445}}</ref><ref>{{Cite web |title=François Viète - Biography |url=https://mathshistory.st-andrews.ac.uk/Biographies/Viete/ |access-date=2025-01-07 |website=Maths History |language=en}}</ref> The formulas were derived by the 16th-century French mathematician [[François Viète]], for the case of positive roots. In the opinion of the 18th-century British mathematician [[Charles Hutton]], as quoted by Funkhouser,<ref>{{Harv|Funkhouser|1930}}</ref> the general principle (not restricted to positive real roots) was first understood by the 17th-century French mathematician [[Albert Girard]]: <blockquote>...[Girard was] the first person who understood the general doctrine of the formation of the coefficients of the powers from the sum of the roots and their products. He was the first who discovered the rules for summing the powers of the roots of any equation.</blockquote> ==See also== {{Portal|Mathematics}} * [[Content (algebra)]] * [[Descartes' rule of signs]] * [[Newton's identities]] * [[Gauss–Lucas theorem]] * [[Properties of polynomial roots]] * [[Rational root theorem]] * [[Symmetric polynomial]] and [[elementary symmetric polynomial]] == Notes == {{reflist}} == References == * {{springer|title=Viète theorem|id=p/v096630}} * {{Citation| first= H. Gray | last=Funkhouser | authorlink = Howard G. Funkhouser | title=A short account of the history of symmetric functions of roots of equations | journal=American Mathematical Monthly | year=1930 | volume= 37 | issue=7 | pages=357–365 | doi=10.2307/2299273| jstor= 2299273| publisher= Mathematical Association of America }} * {{Citation | last = Vinberg | first = E. B. | authorlink= Ernest Vinberg | title = A course in algebra | publisher = American Mathematical Society, Providence, R.I | year = 2003 | pages = | isbn = 0-8218-3413-4 }} * {{Citation | last = Djukić | first = Dušan| title = The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959–2004 | publisher = Springer, New York, NY | year = 2006 | pages = | isbn = 0-387-24299-6 |display-authors=etal}} {{DEFAULTSORT:Viete's Formulas}} [[Category:Articles containing proofs]] [[Category:Polynomials]] [[Category:Elementary algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:EquationNote
(
edit
)
Template:EquationRef
(
edit
)
Template:For
(
edit
)
Template:Harv
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:NumBlk
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Springer
(
edit
)
Template:Tmath
(
edit
)