Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Volume integral
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Integral over a 3-D domain}} {{Calculus |Multivariable}} In [[mathematics]] (particularly [[multivariable calculus]]), a '''volume integral''' (β) is an [[integral]] over a [[Three-dimensional space|3-dimensional]] domain; that is, it is a special case of [[multiple integral]]s. Volume integrals are especially important in [[physics]] for many applications, for example, to calculate [[flux]] densities, or to calculate mass from a corresponding density function. ==In coordinates== Often the volume integral is represented in terms of a differential volume element <math> dV=dx\, dy\, dz </math>. <math display="block">\iiint_D f(x,y,z)\,dV.</math> It can also mean a [[multiple integral|triple integral]] within a region <math>D \subset \R^3</math> of a [[function (mathematics)|function]] <math>f(x,y,z),</math> and is usually written as: <math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz.</math> A volume integral in [[cylindrical coordinates]] is <math display="block">\iiint_D f(\rho,\varphi,z) \rho \,d\rho \,d\varphi \,dz,</math> and a volume integral in [[spherical coordinates]] (using the ISO convention for angles with <math>\varphi</math> as the azimuth and <math>\theta</math> measured from the polar axis (see more on [[Spherical coordinate system#Conventions|conventions]])) has the form <math display="block">\iiint_D f(r,\theta,\varphi) r^2 \sin\theta \,dr \,d\theta\, d\varphi .</math> The triple integral can be transformed from Cartesian coordinates to any arbitrary coordinate system using the [[Jacobian matrix and determinant]]. Suppose we have a transformation of coordinates from <math> (x,y,z)\mapsto(u,v,w) </math>. We can represent the integral as the following. <math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz=\iiint_D f(u,v,w)\left|\frac{\partial (x,y,z)}{\partial (u,v,w)}\right|\,du\,dv\,dw</math> Where we define the Jacobian determinant to be. <math display="block"> \mathbf{J}=\frac{\partial (x,y,z)}{\partial (u,v,w)}= \begin{vmatrix} \frac{\partial x}{\partial u}& \frac{\partial x}{\partial v}& \frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u}& \frac{\partial y}{\partial v}& \frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u}& \frac{\partial z}{\partial v}& \frac{\partial z}{\partial w}\\ \end{vmatrix} </math> == Example == Integrating the equation <math> f(x,y,z) = 1 </math> over a unit cube yields the following result: <math display="block">\int_0^1 \int_0^1 \int_0^1 1 \,dx \,dy \,dz = \int_0^1 \int_0^1 (1 - 0) \,dy \,dz = \int_0^1 \left(1 - 0\right) dz = 1 - 0 = 1</math> So the volume of the unit cube is 1 as expected. This is rather trivial however, and a volume integral is far more powerful. For instance if we have a scalar density function on the unit cube then the volume integral will give the total mass of the cube. For example for density function: <math display="block"> \begin{cases} f: \R^3 \to \R \\ f: (x,y,z) \mapsto x+y+z \end{cases}</math> the total mass of the cube is: <math display="block">\int_0^1 \int_0^1 \int_0^1 (x+y+z) \,dx \,dy \,dz = \int_0^1 \int_0^1 \left(\frac 1 2 + y + z\right) dy \,dz = \int_0^1 (1 + z) \, dz = \frac 3 2</math> ==See also== {{Portal|Mathematics}} *[[Divergence theorem]] *[[Surface integral]] *[[Volume element]] *[[Line element]] *[[Line integral]] ==External links== * {{springer|title=Multiple integral|id=p/m065370}} * {{MathWorld|VolumeIntegral|Volume integral}} {{Calculus topics}} [[Category:Multivariable calculus]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bigger
(
edit
)
Template:Calculus
(
edit
)
Template:Calculus topics
(
edit
)
Template:Endflatlist
(
edit
)
Template:MathWorld
(
edit
)
Template:Portal
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Startflatlist
(
edit
)