Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Class of mathematical functions}} {{Redirect|P-function|the phase-space function representing a quantum state|Glauber–Sudarshan P representation}} In [[mathematics]], the '''Weierstrass elliptic functions''' are [[elliptic function]]s that take a particularly simple form. They are named for [[Karl Weierstrass]]. This class of functions is also referred to as '''℘-functions''' and they are usually denoted by the symbol ℘, a uniquely fancy [[Cursive|script]] ''p''. They play an important role in the theory of elliptic functions, i.e., [[meromorphic function]]s that are [[Doubly_periodic_function|doubly periodic]]. A ℘-function together with its derivative can be used to parameterize [[elliptic curve]]s and they generate the field of elliptic functions with respect to a given period lattice. <div class="thumb tright"> <div style="width:131px;"> [[Image:Weierstrass p.svg|100px|Symbol for Weierstrass P function]]<div class="thumbcaption"> Symbol for Weierstrass <math>\wp</math>-function </div> </div> </div> [[File:Modell der Weierstraßschen p-Funktion -Schilling, XIV, 7ab, 8 - 313, 314-.jpg|thumb|right|Model of Weierstrass <math>\wp</math>-function]] == Motivation == A [[Cubic_form|cubic]] of the form <math>C_{g_2,g_3}^\mathbb{C}=\{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\} </math>, where <math>g_2,g_3\in\mathbb{C}</math> are complex numbers with <math>g_2^3-27g_3^2\neq0</math>, cannot be [[Rational_variety|rationally parameterized]].<ref name=":5" /> Yet one still wants to find a way to parameterize it. For the [[quadric]] <math>K=\left\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\right\}</math>; the [[unit circle]], there exists a (non-rational) parameterization using the sine function and its derivative the cosine function: <math display="block">\psi:\mathbb{R}/2\pi\mathbb{Z}\to K, \quad t\mapsto(\sin t,\cos t).</math> Because of the periodicity of the sine and cosine <math>\mathbb{R}/2\pi\mathbb{Z}</math> is chosen to be the domain, so the function is bijective. In a similar way one can get a parameterization of <math>C_{g_2,g_3}^\mathbb{C} </math> by means of the doubly periodic <math>\wp </math>-function (see in the section "Relation to elliptic curves"). This parameterization has the domain <math>\mathbb{C}/\Lambda </math>, which is topologically equivalent to a [[torus]].<ref>{{citation|surname1=Rolf Busam| title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 259| isbn=978-3-540-32058-6|date=2006|language=German}}</ref> There is another analogy to the trigonometric functions. Consider the integral function <math display="block">a(x)=\int_0^x\frac{dy}{\sqrt{1-y^2}} .</math> It can be simplified by substituting <math>y=\sin t </math> and <math>s=\arcsin x </math>: <math display="block">a(x)=\int_0^s dt = s = \arcsin x .</math> That means <math>a^{-1}(x) = \sin x </math>. So the sine function is an inverse function of an integral function.<ref>{{citation| surname1=Jeremy Gray|title=Real and the complex: a history of analysis in the 19th century|publication-place=Cham|at=p. 71| isbn=978-3-319-23715-2|date=2015|language=German}}</ref> Elliptic functions are the inverse functions of [[elliptic integral]]s. In particular, let: <math display="block">u(z)=\int_z^\infin\frac{ds}{\sqrt{4s^3-g_2s-g_3}} .</math> Then the extension of <math>u^{-1} </math> to the complex plane equals the <math>\wp </math>-function.<ref>{{citation|surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 294|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> This invertibility is used in [[complex analysis]] to provide a solution to certain [[Nonlinear_system#Nonlinear_differential_equations|nonlinear differential equations]] satisfying the [[Painlevé property]], i.e., those equations that admit [[Zeros and poles|poles]] as their only [[Movable_singularity|movable singularities]].<ref>{{cite book | last=Ablowitz | first=Mark J. | last2=Fokas | first2=Athanassios S. | title=Complex Variables: Introduction and Applications | publisher=Cambridge University Press | date=2003 | isbn=978-0-521-53429-1 | doi=10.1017/cbo9780511791246|page=185}}</ref> ==Definition== [[File:Weierstrass elliptic function P.png|thumb|200px|Visualization of the <math>\wp</math>-function with invariants <math>g_2=1+i</math> and <math>g_3=2-3i</math> in which white corresponds to a pole, black to a zero.]] Let <math>\omega_1,\omega_2\in\mathbb{C}</math> be two [[complex number]]s that are [[Linear independence|linearly independent]] over <math>\mathbb{R}</math> and let <math>\Lambda:=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2:=\{m\omega_1+n\omega_2: m,n\in\mathbb{Z}\}</math> be the [[period lattice]] generated by those numbers. Then the <math>\wp</math>-function is defined as follows: :<math>\weierp(z,\omega_1,\omega_2):=\wp(z) = \frac{1}{z^2} + \sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac 1 {(z-\lambda)^2} - \frac 1 {\lambda^2}\right).</math> This series converges locally [[Uniform absolute-convergence|uniformly absolutely]] in the [[complex torus]] <math>\mathbb{C} / \Lambda</math>. It is common to use <math>1</math> and <math>\tau</math> in the [[upper half-plane]] <math>\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z) > 0\}</math> as [[Linear_span|generators]] of the [[Lattice_(group)|lattice]]. Dividing by <math display="inline">\omega_1</math> maps the lattice <math>\mathbb{Z}\omega_1+\mathbb{Z}\omega_2</math> isomorphically onto the lattice <math>\mathbb{Z}+\mathbb{Z}\tau</math> with <math display="inline">\tau=\tfrac{\omega_2}{\omega_1}</math>. Because <math>-\tau</math> can be substituted for <math>\tau</math>, without loss of generality we can assume <math>\tau\in\mathbb{H}</math>, and then define <math>\wp(z,\tau) := \wp(z, 1,\tau)</math>. With that definition, we have <math>\wp(z,\omega_1,\omega_2) = \omega_1^{-2}\wp(z/\omega_1,\omega_2/\omega_1)</math>. == Properties == * <math>\wp</math> is a [[meromorphic function]] with a pole of order 2 at each period <math>\lambda</math> in <math>\Lambda</math>. * <math>\wp</math> is a [[homogeneous function]] in that: ::<math>\wp(\lambda z , \lambda\omega_{1}, \lambda\omega_{2}) = \lambda^{-2} \wp (z, \omega_{1},\omega_{2}).</math> * <math>\wp</math> is an even function. That means <math>\wp(z)=\wp(-z)</math> for all <math>z \in \mathbb{C} \setminus \Lambda</math>, which can be seen in the following way: ::<math>\begin{align} \wp(-z) & =\frac{1}{(-z)^2} + \sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(-z-\lambda)^2}-\frac{1}{\lambda^2}\right) \\ & =\frac{1}{z^2}+\sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(z+\lambda)^2}-\frac{1}{\lambda^2}\right) \\ & =\frac{1}{z^2}+\sum_{\lambda\in\Lambda\setminus\{0\}}\left(\frac{1}{(z-\lambda)^2}-\frac{1}{\lambda^2}\right)=\wp(z). \end{align}</math> :The second last equality holds because <math>\{-\lambda:\lambda \in \Lambda\}=\Lambda</math>. Since the sum converges absolutely this rearrangement does not change the limit. * The derivative of <math>\wp</math> is given by:<ref name=":1">{{citation|surname1=Apostol, Tom M.|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 11|isbn=0-387-90185-X|date=1976| language=German}}</ref> <math display="block">\wp'(z)=-2\sum_{\lambda \in \Lambda}\frac1{(z-\lambda)^3}.</math> * <math>\wp</math> and <math>\wp'</math> are [[Doubly periodic function|doubly periodic]] with the periods <math>\omega_1 </math> and <math>\omega_2</math>.<ref name=":1" /> This means: <math display="block">\begin{aligned} \wp(z+\omega_1) &= \wp(z) = \wp(z+\omega_2),\ \textrm{and} \\[3mu] \wp'(z+\omega_1) &= \wp'(z) = \wp'(z+\omega_2). \end{aligned}</math> It follows that <math>\wp(z+\lambda)=\wp(z)</math> and <math>\wp'(z+\lambda)=\wp'(z)</math> for all <math>\lambda \in \Lambda</math>. == Laurent expansion == Let <math>r:=\min\{{|\lambda}|:0\neq\lambda\in\Lambda\}</math>. Then for <math>0<|z|<r</math> the <math>\wp</math>-function has the following [[Laurent series|Laurent expansion]] <math display="block">\wp(z)=\frac1{z^2}+\sum_{n=1}^\infin (2n+1)G_{2n+2}z^{2n} </math> where <math display="block">G_n=\sum_{0\neq\lambda\in\Lambda}\lambda^{-n}</math> for <math>n \geq 3</math> are so called [[Eisenstein series]].<ref name=":1" /> ==Differential equation== Set <math>g_2=60G_4</math> and <math>g_3=140G_6</math>. Then the <math>\wp</math>-function satisfies the differential equation<ref name=":1" /> <math display="block"> \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3.</math> This relation can be verified by forming a linear combination of powers of <math>\wp</math> and <math>\wp'</math> to eliminate the pole at <math>z=0</math>. This yields an entire elliptic function that has to be constant by [[Liouville's theorem (complex analysis)|Liouville's theorem]].<ref name=":1" /> ===Invariants=== [[Image:Gee three real.jpeg|thumb|The real part of the invariant ''g''<sub>3</sub> as a function of the square of the nome ''q'' on the unit disk.]] [[Image:Gee three imag.jpeg|thumb|The imaginary part of the invariant ''g''<sub>3</sub> as a function of the square of the nome ''q'' on the unit disk.]] The coefficients of the above differential equation <math>g_2</math> and <math>g_3</math> are known as the ''invariants''. Because they depend on the lattice <math>\Lambda</math> they can be viewed as functions in <math>\omega_1</math> and <math>\omega_2</math>. The series expansion suggests that <math>g_2</math> and <math>g_3</math> are [[homogeneous function]]s of degree <math>-4</math> and <math>-6</math>. That is<ref name=":0">{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory|date=1976|publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York| pages=14| oclc=2121639}}</ref> <math display="block">g_2(\lambda \omega_1, \lambda \omega_2) = \lambda^{-4} g_2(\omega_1, \omega_2)</math> <math display="block">g_3(\lambda \omega_1, \lambda \omega_2) = \lambda^{-6} g_3(\omega_1, \omega_2)</math> for <math>\lambda \neq 0</math>. If <math>\omega_1</math> and <math>\omega_2</math> are chosen in such a way that <math>\operatorname{Im}\left( \tfrac{\omega_2}{\omega_1} \right)>0 </math>, <math>g_2</math> and <math>g_3</math> can be interpreted as functions on the [[upper half-plane]] <math>\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)>0\}</math>. Let <math>\tau=\tfrac{\omega_2}{\omega_1}</math>. One has:<ref name=":2">{{citation|title=Modular functions and Dirichlet series in number theory|date=1976|at=p. 14|publication-place=New York|publisher=Springer-Verlag|language=German|isbn=0-387-90185-X| surname1=Apostol, Tom M.}}</ref> <math display="block">g_2(1,\tau)=\omega_1^4g_2(\omega_1,\omega_2),</math> <math display="block">g_3(1,\tau)=\omega_1^6 g_3(\omega_1,\omega_2).</math> That means ''g''<sub>2</sub> and ''g''<sub>3</sub> are only scaled by doing this. Set <math display="block">g_2(\tau):=g_2(1,\tau) </math> and <math display="block">g_3(\tau):=g_3(1,\tau).</math> As functions of <math>\tau\in\mathbb{H}</math>, <math>g_2</math> and <math>g_3</math> are so called [[Modular form|modular forms.]] The [[Fourier series]] for <math>g_2</math> and <math>g_3</math> are given as follows:<ref>{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/20262861|title=Modular functions and Dirichlet series in number theory|date=1990| publisher=Springer-Verlag|isbn=0-387-97127-0|edition=2nd|location=New York|pages=20|oclc=20262861}}</ref> <math display="block">g_2(\tau)=\frac43\pi^4 \left[ 1+ 240\sum_{k=1}^\infty \sigma_3(k) q^{2k} \right] </math> <math display="block">g_3(\tau)=\frac{8}{27}\pi^6 \left[ 1- 504\sum_{k=1}^\infty \sigma_5(k) q^{2k} \right] </math> where <math display="block">\sigma_m(k):=\sum_{d\mid{k}}d^m</math> is the [[divisor function]] and <math>q=e^{\pi i\tau}</math> is the [[Nome (mathematics)|nome]]. ===Modular discriminant=== [[Image:Discriminant real part.jpeg|thumb|The real part of the discriminant as a function of the square of the nome ''q'' on the unit disk.]] The ''modular discriminant'' <math>\Delta</math> is defined as the [[discriminant]] of the characteristic polynomial of the differential equation <math display="block"> \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3</math> as follows: <math display="block"> \Delta=g_2^3-27g_3^2. </math> The discriminant is a modular form of weight <math>12</math>. That is, under the action of the [[modular group]], it transforms as <math display="block">\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau) </math> where <math>a,b,d,c\in\mathbb{Z}</math> with <math>ad-bc = 1</math>.<ref>{{Cite book|last=Apostol | first = Tom M.| url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory| date=1976| publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York|pages=50|oclc=2121639}}</ref> Note that <math>\Delta=(2\pi)^{12}\eta^{24}</math> where <math>\eta</math> is the [[Dedekind eta function]].<ref>{{Cite book| last=Chandrasekharan, K. (Komaravolu), 1920-|url=https://www.worldcat.org/oclc/12053023|title=Elliptic functions| date=1985| publisher=Springer-Verlag|isbn=0-387-15295-4|location=Berlin|pages=122|oclc=12053023}}</ref> For the Fourier coefficients of <math>\Delta</math>, see [[Ramanujan tau function]]. ===The constants ''e''<sub>1</sub>, ''e''<sub>2</sub> and ''e''<sub>3</sub>=== <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are usually used to denote the values of the <math>\wp</math>-function at the half-periods. <math display="block">e_1\equiv\wp\left(\frac{\omega_1}{2}\right)</math> <math display="block">e_2\equiv\wp\left(\frac{\omega_2}{2}\right)</math> <math display="block">e_3\equiv\wp\left(\frac{\omega_1+\omega_2}{2}\right)</math> They are pairwise distinct and only depend on the lattice <math>\Lambda</math> and not on its generators.<ref>{{citation| first=Rolf | last = Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin| at=p. 270|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are the roots of the cubic polynomial <math>4\wp(z)^3-g_2\wp(z)-g_3</math> and are related by the equation: <math display="block">e_1+e_2+e_3=0.</math> Because those roots are distinct the discriminant <math>\Delta</math> does not vanish on the upper half plane.<ref>{{citation| first=Tom M. |last = Apostol|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 13|isbn=0-387-90185-X|date=1976|language=German}}</ref> Now we can rewrite the differential equation: <math display="block">\wp'^2(z)=4(\wp(z)-e_1)(\wp(z)-e_2)(\wp(z)-e_3).</math> That means the half-periods are zeros of <math>\wp'</math>. The invariants <math>g_2</math> and <math>g_3</math> can be expressed in terms of these constants in the following way:<ref>{{citation|surname1=K. Chandrasekharan|title=Elliptic functions|publisher=Springer-Verlag|publication-place=Berlin|at=p. 33| isbn=0-387-15295-4|date=1985|language=German}}</ref> <math display="block">g_2 = -4 (e_1 e_2 + e_1 e_3 + e_2 e_3)</math> <math display="block">g_3 = 4 e_1 e_2 e_3</math> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are related to the [[modular lambda function]]: <math display="block">\lambda (\tau)=\frac{e_3-e_2}{e_1-e_2},\quad \tau=\frac{\omega_2}{\omega_1}.</math> ==Relation to Jacobi's elliptic functions== For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of [[Jacobi's elliptic functions]]. The basic relations are:<ref>{{cite book | author = Korn GA, [[Theresa M. Korn|Korn TM]] | year = 1961 | title = Mathematical Handbook for Scientists and Engineers | publisher = McGraw–Hill | location = New York | pages = 721 | lccn = 59014456}}</ref> <math display="block"> \wp(z) = e_3 + \frac{e_1 - e_3}{\operatorname{sn}^2 w} = e_2 + ( e_1 - e_3 ) \frac{\operatorname{dn}^2 w}{\operatorname{sn}^2 w} = e_1 + ( e_1 - e_3 ) \frac{\operatorname{cn}^2 w}{\operatorname{sn}^2 w} </math> where <math>e_1,e_2</math> and <math>e_3</math> are the three roots described above and where the modulus ''k'' of the Jacobi functions equals <math display="block">k = \sqrt\frac{e_2 - e_3}{e_1 - e_3}</math> and their argument ''w'' equals <math display="block">w = z \sqrt{e_1 - e_3}.</math> == Relation to Jacobi's theta functions == The function <math>\wp (z,\tau)=\wp (z,1,\omega_2/\omega_1)</math> can be represented by [[Theta function#Auxiliary functions|Jacobi's theta functions]]: <math display="block">\wp (z,\tau)=\left(\pi \theta_2(0,q)\theta_3(0,q)\frac{\theta_4(\pi z,q)}{\theta_1(\pi z,q)}\right)^2-\frac{\pi^2}{3}\left(\theta_2^4(0,q)+\theta_3^4(0,q)\right)</math> where <math>q=e^{\pi i\tau}</math> is the nome and <math>\tau</math> is the period ratio <math>(\tau\in\mathbb{H})</math>.<ref>{{dlmf|first1=W. P.|last1=Reinhardt|first2=P. L.|last2=Walker|id=23.6.E7|title=Weierstrass Elliptic and Modular Functions}}</ref> This also provides a very rapid algorithm for computing <math>\wp (z,\tau)</math>. == Relation to elliptic curves == {{see also|Elliptic curve#Elliptic curves over the complex numbers}} Consider the embedding of the cubic curve in the [[complex projective plane]] :<math>\bar C_{g_2,g_3}^\mathbb{C} = \{(x,y)\in\mathbb{C}^2:y^2=4x^3-g_2x-g_3\}\cup\{O\}\subset \mathbb{C}^{2} \cup \mathbb{P}_1(\mathbb{C}) = \mathbb{P}_2(\mathbb{C}).</math> where <math>O</math> is a point lying on the [[line at infinity]] <math>\mathbb{P}_1(\mathbb{C})</math>. For this cubic there exists no rational parameterization, if <math>\Delta \neq 0</math>.<ref name=":5">{{citation|surname1=Hulek, Klaus.|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 8|isbn=978-3-8348-2348-9|date=2012|language=German}}</ref> In this case it is also called an elliptic curve. Nevertheless there is a parameterization in [[homogeneous coordinates]] that uses the <math>\wp</math>-function and its derivative <math>\wp'</math>:<ref>{{citation|title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen|date=2012|at=p. 12|edition=2., überarb. u. erw. Aufl. 2012|publication-place=Wiesbaden|publisher=Vieweg+Teubner Verlag|language=German|isbn=978-3-8348-2348-9|surname1=Hulek, Klaus.}}</ref> :<math> \varphi(\wp,\wp'): \mathbb{C}/\Lambda\to\bar C_{g_2,g_3}^\mathbb{C}, \quad z \mapsto \begin{cases} \left[\wp(z):\wp'(z):1\right] & z \notin \Lambda \\ \left[0:1:0\right] \quad & z \in \Lambda \end{cases} </math> Now the map <math>\varphi</math> is [[Bijection|bijective]] and parameterizes the elliptic curve <math>\bar C_{g_2,g_3}^\mathbb{C}</math>. <math>\mathbb{C}/\Lambda </math> is an [[abelian group]] and a [[topological space]], equipped with the [[quotient topology]]. It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair <math>g_2,g_3\in\mathbb{C}</math> with <math>\Delta = g_2^3 - 27g_3^2 \neq 0 </math> there exists a lattice <math>\mathbb{Z}\omega_1+\mathbb{Z}\omega_2</math>, such that <math>g_2=g_2(\omega_1,\omega_2) </math> and <math>g_3=g_3(\omega_1,\omega_2) </math>.<ref>{{citation|surname1=Hulek, Klaus.| title=Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen| edition=2., überarb. u. erw. Aufl. 2012|publisher=Vieweg+Teubner Verlag|publication-place=Wiesbaden|at=p. 111| isbn=978-3-8348-2348-9| date=2012|language=German}}</ref> The statement that elliptic curves over <math>\mathbb{Q}</math> can be parameterized over <math>\mathbb{Q}</math>, is known as the [[modularity theorem]]. This is an important theorem in [[number theory]]. It was part of [[Andrew Wiles|Andrew Wiles']] proof (1995) of [[Fermat's Last Theorem]]. ==Addition theorems== Let <math>z,w\in\mathbb{C}</math>, so that <math>z,w,z+w,z-w\notin\Lambda </math>. Then one has:<ref name=":3">{{citation| surname1=Rolf Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin|at=p. 286|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> <math display="block">\wp(z+w)=\frac14 \left[\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)}\right]^2-\wp(z)-\wp(w).</math> As well as the duplication formula:<ref name=":3" /> <math display="block">\wp(2z)=\frac14\left[\frac{\wp''(z)}{\wp'(z)}\right]^2-2\wp(z).</math> ==== Proofs ==== 1. These formulas can come with a geometric interpretation. If one looks at the elliptic curve <math>C_{g_2,g_3}^{\mathbb{C}} </math> a line <math>\lambda= \{(x,y)\in\mathbb{C}^2:y=mx+q\}</math> intersects it in three points:<math>C_{g_2,g_3}^{\mathbb{C}} \cap \lambda=\{P,Q,R\} </math>. Since these points belong to the elliptic curve they can be labeled as <math>P=(\wp(u),\wp'(u)) \quad Q=(\wp(v),\wp'(v)) \quad</math> <math> R=(\wp(u+v),\wp'(u+v))</math> with <math>(u,v)\notin \Lambda </math>. From the formula of a secant line we have <math>m=\frac{y_P-y_Q}{x_P-x_Q}=\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)}</math> letting <math>C_{g_2,g_3}^{\mathbb{C}} = \lambda </math> we have the equation <math> (mx+q)^2=4x^3-g_2x-g_3</math> which becomes <math> 4x^3-m^2x^2-(2mq+g_2)x-g_3-q^2=0</math> using [[Vieta's formulas]] one obtains: <math> x_P+x_Q+x_R=\frac{m^2}4 </math> which provides the wanted formula <math>\wp(u+v)+\wp(u)+\wp(v)=\frac14 \left[ \frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)} \right]^2 </math> 2. A second proof from Akhiezer's book<ref>Akhiezer's book Elements of the theory of elliptic functions https://www.ams.org/books/mmono/079/mmono079-endmatter.pdf</ref> is the following: if <math> f </math> is arbitrary elliptic function then: <math>f(u)=c\prod_{i=1}^n \frac{\sigma(u-a_i)}{\sigma(u-b_i)} \quad c \in \mathbb{C}</math> where <math> \sigma </math> is one of the [[Weierstrass functions ]] and <math> a_i , b_i</math> are the respective zeros and poles in the period parallelogram. We then let a function <math>k(u,v)=\wp(u)-\wp(v)</math> From the previous lemma we have: <math>k(u,v)= \wp(u)-\wp(v)=c\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2} </math> From some calculations one can find that <math>c=\frac1{\sigma(v)^2} \implies\wp(u)-\wp(v)=\frac{\sigma(u+v)\sigma(u-v)}{\sigma(u)^2\sigma(v)^2}</math> By definition the Weierstrass Zeta function: <math> \frac{d}{dz}\ln \sigma(z)=\zeta(z)</math> therefore we logarithmicly differentiate both sides obtaining: <math>\frac{\wp'(u)}{\wp(u)-\wp(v)}=\zeta(u+v)-2\zeta(u)-\zeta(u-v)</math> Once again by definition <math> \zeta'(z)=-\wp(z)</math> thus by differentiating once more on both sides and rearranging the terms we obtain <math>-\wp(u+v)=-\wp(u)+\frac12 \frac{ \wp''(v)[\wp(u)-\wp(v) ]-\wp'(u)[\wp'(u)-\wp'(v)] }{ [\wp(u)-\wp(v) ]^2 } </math> Knowing that <math>\wp'' </math> has the following differential equation <math>2\wp''=12\wp^2-g_2</math> and rearranging the terms one gets the wanted formula <math display="block">\wp(u+v)=\frac14 \left[\frac{\wp'(u)-\wp'(v)}{\wp(u)-\wp(v)}\right]^2-\wp(u)-\wp(v).</math> == Typography == The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.{{refn | group=footnote | This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of ''[[A Course of Modern Analysis]]'' by [[E. T. Whittaker]]<!-- The first edition was by Whittaker alone. --> in 1902 also used it.<ref>{{citation | title= The letter ℘ Name & origin? | author = teika kazura| publisher = [[MathOverflow]] | url= https://mathoverflow.net/q/278130 | date= 2017-08-17 | access-date=2018-08-30 }}</ref> }} It should not be confused with the normal mathematical script letters P: 𝒫 and 𝓅. In computing, the letter ℘ is available as <code>\wp</code> in [[TeX]]. In [[Unicode]] the code point is {{unichar|2118|script capital p|html=}}, with the more correct alias {{smallcaps|1=weierstrass elliptic function}}.{{refn|group="footnote" | The [[Unicode Consortium]] has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like {{unichar|1d4c5|mathematical script small p}}, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.<ref>{{cite web | work=Unicode Technical Note #27 | title=Known Anomalies in Unicode Character Names | url=http://unicode.org/notes/tn27/ | version=version 4 | publisher=Unicode, Inc. | date=2017-04-10 | access-date=2017-07-20 }}</ref><ref>{{cite web | url=https://www.unicode.org/Public/10.0.0/ucd/NameAliases.txt | title=NameAliases-10.0.0.txt | date=2017-05-06 | access-date=2017-07-20 | publisher=Unicode, Inc.}}</ref> }} In [[HTML]], it can be escaped as <code>&weierp;</code>. {{charmap |2118|name1=Script Capital P /<br />Weierstrass Elliptic Function }} == See also == * [[Weierstrass functions]] * [[Jacobi elliptic functions]] * [[Lemniscate elliptic functions]] == Footnotes == {{Reflist|group=footnote}} == References == {{Reflist}} *{{AS ref|18|627}} * [[Naum Akhiezer|N. I. Akhiezer]], ''Elements of the Theory of Elliptic Functions'', (1970) Moscow, translated into English as ''AMS Translations of Mathematical Monographs Volume 79'' (1990) AMS, Rhode Island {{isbn|0-8218-4532-2}} * [[Tom M. Apostol]], ''Modular Functions and Dirichlet Series in Number Theory, Second Edition'' (1990), Springer, New York {{isbn|0-387-97127-0}} (See chapter 1.) * K. Chandrasekharan, ''Elliptic functions'' (1980), Springer-Verlag {{isbn|0-387-15295-4}} * [[Konrad Knopp]], ''Funktionentheorie II'' (1947), Dover Publications; Republished in English translation as ''Theory of Functions'' (1996), Dover Publications {{isbn|0-486-69219-1}} * [[Serge Lang]], ''Elliptic Functions'' (1973), Addison-Wesley, {{isbn|0-201-04162-6}} * [[E. T. Whittaker]] and [[G. N. Watson]], ''[[A Course of Modern Analysis]]'', [[Cambridge University Press]], 1952, chapters 20 and 21 ==External links== {{commons category|Weierstrass's elliptic functions}} * {{springer|title=Weierstrass elliptic functions|id=p/w097450}} * [http://mathworld.wolfram.com/WeierstrassEllipticFunction.html Weierstrass's elliptic functions on Mathworld]. * Chapter 23, [http://dlmf.nist.gov/23 Weierstrass Elliptic and Modular Functions] in DLMF ([[Digital Library of Mathematical Functions]]) by W. P. Reinhardt and P. L. Walker. * [https://github.com/daviddumas/weierstrass Weierstrass P function and its derivative implemented in C by David Dumas] [[Category:Modular forms]] [[Category:Algebraic curves]] [[Category:Elliptic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:AS ref
(
edit
)
Template:Charmap
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Commons category
(
edit
)
Template:Dlmf
(
edit
)
Template:Isbn
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Refn
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Smallcaps
(
edit
)
Template:Springer
(
edit
)
Template:Unichar
(
edit
)