Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Windscale fire
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|1957 nuclear accident in the UK}} {{Use dmy dates|date=March 2022}} {{Infobox news event | image_name = Storm Clouds over Sellafield - geograph.org.uk - 330062.jpg | image_size = | caption = The Windscale Piles (centre and right) in 1985 | date= 10 October 1957 | place = Windscale, [[Seascale]], [[Cumbria]], United Kingdom (now [[Sellafield]]) | outcome = [[International Nuclear Event Scale|INES]] Level 5 (accident with wider consequences) | coordinates = {{coord|54.4243|N|3.4982|W|region:GB_type:landmark|display=inline,title}} |reported deaths = Estimated 100 to 240 [[cancer]] fatalities in the long term<ref name="Richard Black"/><ref name="Irish Times Windscale">{{cite news |last1=Ahlstrom |first1=Dick |title=The unacceptable toll of Britain's nuclear disaster |url=https://www.irishtimes.com/news/the-unacceptable-toll-of-britain-s-nuclear-disaster-1.970400 |access-date=15 June 2020 |newspaper=The Irish Times |date=8 October 2007}}</ref><ref name="2007 Telegraph">{{cite news |last1=Highfield |first1=Roger |title=Windscale fire: 'We were too busy to panic' |url=https://www.telegraph.co.uk/news/science/science-news/3309842/Windscale-fire-We-were-too-busy-to-panic.html |access-date=15 June 2020 |work=The Telegraph |date=9 October 2007 |archive-url=https://web.archive.org/web/20200615223147/https://www.telegraph.co.uk/news/science/science-news/3309842/Windscale-fire-We-were-too-busy-to-panic.html |archive-date=15 June 2020 |url-status=live }}</ref> |reported injuries = A maximum of 140 of the estimated 240 additional cases of [[cancer]] non-fatal |notes = }} The '''Windscale fire''' of 10 October 1957 was the worst [[Nuclear and radiation accidents and incidents|nuclear accident]] in the United Kingdom's history, and one of the worst in the world, ranked in severity at level 5 out of 7 on the [[International Nuclear Event Scale]].<ref name="Richard Black">{{cite news |url=https://www.bbc.co.uk/news/science-environment-12789749 |title=Fukushima β disaster or distraction? |author=Richard Black |date=18 March 2011 |publisher=BBC News|access-date=7 April 2011}}</ref> The fire was in Unit 1 of the two-pile [[Windscale Piles|Windscale site]] on the north-west coast of England in [[Cumberland]] (now [[Sellafield]]). The two [[graphite-moderated reactor]]s, referred to at the time as "piles", had been built as part of the British post-war [[High Explosive Research|atomic bomb project]]. Windscale Pile No. 1 was operational in October 1950, followed by Pile No. 2 in June 1951.<ref>{{cite journal | year = 2007 | title = Editorial | journal = J. Radiol. Prot. | volume = 27 | issue = 3| pages = 211β215 | doi=10.1088/0952-4746/27/3/e02| pmid = 17768324 | bibcode = 2007JRP....27..211W| last1 = Wakeford | first1 = Richard | s2cid = 2115012 }}</ref> The fire burned for three days and released [[radioactive fallout]] which spread across the UK and the rest of Europe.<ref name="bbc-7030536"/> The radioactive isotope [[iodine-131]], which may lead to [[Thyroid cancer|cancer of the thyroid]], was of particular concern at the time. It has since come to light that small but significant amounts of the highly dangerous radioactive isotope [[polonium-210]] were also released.<ref>{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |page=147 |edition=2nd}}</ref><ref name="bbc-7030536" /> It is estimated that the radiation leak may have caused 240 additional cancer cases, with 100 to 240 of these being fatal.<ref name="Richard Black"/><ref name="Irish Times Windscale"/><ref name="2007 Telegraph"/> At the time of the incident, no one was evacuated from the surrounding area, but milk from about {{convert|500|km2|abbr=in}} of the nearby countryside was diluted and destroyed for about a month due to concerns about its radiation exposure. The UK government played down the events at the time, and reports on the fire were subject to heavy censorship, as Prime Minister [[Harold Macmillan]] feared the incident would harm British-American nuclear relations.<ref name="2007 Telegraph" /> The event was not an isolated incident; there had been a series of radioactive discharges from the piles in the years leading up to the accident.<ref name="1990 Doc">{{cite book |last1=Hamann |first1=Paul |last2=Blakeway |first2=Denys |title=Our Reactor is on Fire |date=1990 |publisher=BBC TV |location=Inside Story}}</ref> In early 1957, there had been [[List of nuclear power accidents by country#United Kingdom|a leak of radioactive material]] in which [[strontium-90]] was released into the environment.<ref name="Morgan">{{cite book |last1=Morgan |first1=Kenneth O. |title=Britain Since 1945: The People's Peace |date=2001 |publisher=Oxford University Press |location=Oxford |isbn=0191587990 |page=180 |edition=3rd |url=https://books.google.com/books?id=7OcRDAAAQBAJ&q=windscale+spring+1957+disaster&pg=PA180}}</ref><ref>{{Cite news|url = https://www.newspapers.com/clip/1957216/suppressed_1957_windscale_radioactive/|title = Info withheld on nuclear accident, papers show|date = 3 January 1989|access-date = 10 March 2015|newspaper = The Index-Journal|location = Greenwood, South Carolina}}</ref> Like the later fire, this incident was covered up by the British government.<ref name="Morgan" /> Later studies on the release of radioactive material due to the Windscale fire revealed that much of the contamination had resulted from such radiation leaks before the fire.<ref name="1990 Doc" /> A 2010 study of workers involved in the cleanup of the accident found no significant long-term health effects from their involvement.<ref name="iopscience-2010">{{Cite journal | last1 = McGeoghegan | first1 = D. | last2 = Whaley | first2 = S. | last3 = Binks | first3 = K. | last4 = Gillies | first4 = M. | last5 = Thompson | first5 = K. | last6 = McElvenny | first6 = D. M. | doi = 10.1088/0952-4746/30/3/001 | title = Mortality and cancer registration experience of the Sellafield workers known to have been involved in the 1957 Windscale accident: 50 year follow-up | journal = Journal of Radiological Protection | volume = 30 | issue = 3 | pages = 407β431 | year = 2010 | pmid = 20798473|bibcode = 2010JRP....30..407M | s2cid = 206023363 }}</ref><ref name="iopscience-2000">{{Cite journal | last1 = McGeoghegan | first1 = D. | last2 = Binks | first2 = K. | title = Mortality and cancer registration experience of the Sellafield employees known to have been involved in the 1957 Windscale accident | journal = Journal of Radiological Protection | volume = 20 | issue = 3 | pages = 261β274 | doi = 10.1088/0952-4746/20/3/301 | year = 2000 | pmid = 11008931|bibcode = 2000JRP....20..261M | s2cid = 250751210 }}</ref> ==Background== The December 1938 discovery of [[nuclear fission]] by [[Otto Hahn]] and [[Fritz Strassmann]] following its prediction by [[Ida Noddack]] in 1934 {{ndash}} and its explanation and naming by [[Lise Meitner]] and [[Otto Frisch]] {{ndash}} raised the possibility that an extremely powerful [[atomic bomb]] could be created.{{sfn|Gowing|1964|pp=23β29}} During the [[Second World War]], Frisch and [[Rudolf Peierls]] at the [[University of Birmingham]] calculated the [[critical mass]] of a metallic sphere of pure [[uranium-235]], and found that as little as {{convert|1|to|10|kg}} might explode with the power of thousands of tons of dynamite.{{sfn|Gowing|1964|pp=39β41}} In response, the British government initiated an atomic-bomb project, codenamed [[Tube Alloys]].{{sfn|Gowing|1964|pp=108β111}} The August 1943 [[Quebec Agreement]] merged Tube Alloys with the American [[Manhattan Project]].{{sfn|Gowing|1964|pp=173β177}} As overall head of the [[British contribution to the Manhattan Project]], [[James Chadwick]] forged a close and successful partnership with the Americans,{{sfn|Gowing|1964|pp=236β239}} and ensured that British participation was complete and wholehearted.{{sfn|Gowing|1964|p=242}} After the war ended, the [[Special Relationship]] between Britain and the United States "became very much less special".{{sfn|Gowing|Arnold|1974a|p=93}} The British government had assumed that America would continue to share nuclear technology, which it considered a joint discovery,{{sfn|Goldberg|1964|p=410}} but little information was exchanged immediately after the war.{{sfn|Gowing|Arnold|1974a|p=111}} The [[Atomic Energy Act of 1946]] (McMahon Act) officially ended technical cooperation. Its control of "restricted data" prevented the United States' allies from receiving any information.{{sfn|Gowing|Arnold|1974a|pp=106β108}} The British government saw this as a resurgence of [[United States isolationism]] akin to that which had occurred after the [[First World War]]. This raised the possibility that Britain might have to fight an aggressor alone.{{sfn|Gowing|1964|pp=94β95}} It also feared that Britain might lose its [[great power]] status, and therefore its influence in world affairs.{{sfn|Gowing|Arnold|1974a|pp=181β184}} The [[Prime Minister of the United Kingdom]], [[Clement Attlee]], set up a [[United Kingdom cabinet committee|cabinet sub-committee]], the [[Gen 75 Committee]] (known informally as the "Atomic Bomb Committee"),{{sfn|Gowing|Arnold|1974a|p=21}} on 10 August 1945 to examine the feasibility of a renewed nuclear weapons programme.{{sfn|Baylis|Stoddart|2015|p=32}} The Tube Alloys Directorate was transferred from the [[Department of Scientific and Industrial Research (United Kingdom)|Department of Scientific and Industrial Research]] to the Ministry of Supply on 1 November 1945,{{sfn|Goldberg|1964|p=417}} and [[Charles Portal, 1st Viscount Portal of Hungerford|Lord Portal]] was appointed Controller of Production, Atomic Energy (CPAE), with direct access to the Prime Minister. An [[Atomic Energy Research Establishment]] (AERE) was established at [[RAF Harwell]], south of [[Oxford]], under the directorship of [[John Cockcroft]].{{sfn|Gowing|Arnold|1974a|pp=40β43}} [[Christopher Hinton, Baron Hinton of Bankside|Christopher Hinton]] agreed to oversee the design, construction and operation of the new nuclear weapons facilities,{{sfn|Gowing|Arnold|1974a|p=41}} which included a uranium metal plant at [[Springfields]] in [[Lancashire]],{{sfn|Gowing|Arnold|1974b|pp=370β371}} and [[nuclear reactor]]s and [[plutonium]] processing facilities at [[Windscale]] in [[Cumbria]].{{sfn|Gowing|Arnold|1974b|pp=400β407}} He established his headquarters in a former [[Royal Ordnance Factory]] at [[ROF Risley|Risley]] in Lancashire on 4 February 1946.{{sfn|Gowing|Arnold|1974a|p=41}} In July 1946, the [[Chiefs of Staff Committee]] recommended that Britain acquire nuclear weapons.{{sfn|Wynn|1997|pp=16β18}} They estimated that 200 bombs would be required by 1957.{{sfn|Gowing|Arnold|1974a|p=216}} The 8 January 1947 meeting of the Gen 163 Committee, a subcommittee of the Gen 75 Committee, agreed to proceed with the development of atomic bombs, and endorsed Portal's proposal to place Penney, now the Chief Superintendent Armament Research (CSAR) at [[Fort Halstead]] in Kent, in charge of the development effort,{{sfn|Gowing|Arnold|1974a|pp=181β184}} which was codenamed [[High Explosive Research]].{{sfn|Cathcart|1995|pp=24, 48, 57}} Penney contended that "the discriminative test for a first-class power is whether it has made an atomic bomb and we have either got to pass the test or suffer a serious loss of prestige both inside this country and internationally."{{sfn|Gowing|Arnold|1974b|p=500}} ==Windscale Piles== {{main|Windscale Piles}} [[File:Windscale-reactor.svg|thumb|right|The design of Windscale Pile No. 1, with one of the many fuel channels illustrated]] [[File:EN-302px-Reaktor Windscale-schemat.png|thumb|right|A cutaway diagram of the Windscale reactor]] Through their participation in the wartime Tube Alloys and Manhattan Project, British scientists had considerable knowledge of the production of [[fissile]] materials. The Americans had created two kinds, uranium-235 and plutonium, and had pursued three different methods of [[uranium enrichment]].{{sfn|Gowing|Arnold|1974a|pp=10β12}} An early decision had to be made as to whether High Explosive Research should concentrate on uranium-235 or plutonium. While everyone would have liked to pursue every avenue, as the Americans had, it was doubtful whether the cash-strapped post-war British economy could afford the money or the skilled manpower that this would require.{{sfn|Gowing|Arnold|1974a|pp=165β167}} The scientists who had remained in Britain favoured uranium-235, but those who had been working in America were strongly in favour of plutonium. They estimated that a uranium-235 bomb would require ten times the fissile material as one using plutonium to produce half the [[TNT equivalent]]. Estimates of the cost of nuclear reactors varied, but it was reckoned that a uranium enrichment plant would cost ten times as much to produce the same number of atomic bombs as a reactor. The decision was therefore taken in favour of plutonium.{{sfn|Gowing|Arnold|1974a|pp=165β167}} The reactors were built in a short time near the village of [[Seascale]], [[Cumberland]]. They were known as Windscale Pile 1 and Pile 2, housed in large concrete buildings a few hundred feet apart. The core of the reactors consisted of a large block of [[graphite]] with horizontal channels drilled through it for the fuel cartridges. Each cartridge consisted of a uranium rod about {{convert|30|cm|abbr=in}} long encased in an aluminium canister to protect it from the air, as uranium becomes highly reactive when hot and can catch fire.{{sfn|Windscale|loc=19:15}} The cartridges were finned, allowing heat exchange with the environment to cool the fuel rods while they were in the reactor. Rods were pushed in the front of the core, the "charge face", with new rods being added at a calculated rate. This pushed the other cartridges in the channel towards the rear of the reactor, eventually causing them to fall out the back, the "discharge face", into a water-filled channel where they cooled and could be collected.{{sfn|Windscale|loc=19:15}} The chain reaction in the core converted the uranium into a variety of isotopes, including some plutonium, which was separated from the other materials using chemical processing. As this plutonium was intended for [[Isotopes of plutonium#240Pu as an obstacle to nuclear weapons|weapons purposes]], the [[burnup]] of the fuel would have been kept low{{Citation needed|reason=appears to be knowledge about other reactors applied to this one?|date=October 2022}} to reduce production of the heavier plutonium isotopes like [[plutonium-240]] and [[plutonium-241]]. The design initially called for the core to be cooled like the [[B Reactor]], which used a constant supply of water that poured through the channels in the graphite. There were two issues associated with a water-cooled design. The first was the supply of large volumes of high purity water, without which the fuel cartridges would quickly corrode. This site also had to be in a remote location, and close to the sea so that radioactive effluents could be discharged. The only site that met these criteria (in Britain) was next to [[Loch Morar]], near [[Arisaig]].<ref>TNA: PRO CAB 134/21. Ministerial Committee on Atomic Energy: Meetings 1β5; Papers 1β21.</ref> However, the high chlorine content in Loch Morar meant that a large and complex water purification plant would be required. These factors meant that the project risked being delayed by two years.<ref>{{Cite book |last=Hill |first=C. N. |title=An Atomic Empire β A Technical History of the Rise and Fall of the British Atomic Energy Programme |date=2013 |publisher=Imperial College Press |isbn=978-1-908977-41-0}}</ref> There was also considerable concern that a water-cooled system was subject to catastrophic failure in the event of a [[loss-of-coolant accident]]. This would cause the reactor to run out of control in seconds {{Citation needed|date=March 2024}}, potentially exploding. At [[Hanford Site|Hanford]], this possibility was dealt with by constructing a {{convert|30|mi|adj=on}} escape road to evacuate the staff were this to occur, abandoning the site.{{sfn|Windscale|loc=19:50}} Lacking any location where a 30-mile area could be abandoned if a similar event occurred in the UK, the designers desired a passively safe cooling system. In place of water, they used air cooling driven by two auxiliary fans (and four shutdown fans when required) through the piles and out through a {{convert|400|ft|adj=on}} tall chimney, which could create enough airflow to cool the reactor under normal and shutdown operating conditions. The chimney was arranged so it pulled air through the channels in the core, cooling the fuel via fins on the cartridges. During construction, physicist Terence Price considered the possibility of a fuel cartridge splitting open if, for example, a new cartridge was inserted too forcefully, causing the one at the back of the channel to fall past the relatively narrow water channel and break on the floor behind it. The hot irradiated uranium could catch fire, and the fine uranium oxide dust would be blown up the chimney and escape.{{sfn|Windscale|loc=22:15}} Raising the issue at a meeting, he suggested filters be added to the chimneys, but his concerns were dismissed as too difficult to deal with and not even recorded in the minutes. Sir John Cockcroft, leading the project team, was sufficiently alarmed to order the filters. They could not be installed at the base as construction of the chimneys had already begun, and were constructed on the ground then winched into position at the top once the chimney's concrete had set.{{sfn|Windscale|loc=22:30}} They became known as "[[John Cockcroft#Cockcroft's Folly|Cockcroft's Folly]]" as many regarded the delay they caused and their great expense to be a needless waste. During the fire the filters trapped about 95% of the radioactive dust and saved much of northern England from greater contamination. Terence Price said "the word folly did not seem appropriate after the accident".<ref name="Cockroft's Follies">{{cite news |last1=Leatherdale |first1=Duncan |title=Windscale Piles: Cockcroft's Follies avoided nuclear disaster |url=https://www.bbc.co.uk/news/uk-england-cumbria-29803990 |access-date=12 July 2020 |publisher=BBC News|date=4 November 2014}}</ref> In the end, Price's concerns came to pass. So many cartridges missed the water channel that it became routine for staff to walk through the chimney ductwork with shovels and scoop the cartridges back into the water.{{sfn|Windscale|loc=42.35}} On other occasions, fuel cartridges became stuck in the channels and burst open while still in the core.{{sfn|Windscale|loc=41.10}} In spite of these precautions and the stack filters, scientist Frank Leslie discovered radioactivity around the site and the village, but this information was kept secret, even from the staff at the station.{{sfn|Windscale|loc=41.45}}<ref>{{Cite web | url=https://www.wsws.org/en/articles/2008/04/nucl-a29.html | title=BBC documentary reveals government reckless in drive for nuclear weapons| date=29 April 2008}}</ref> ==Wigner energy== {{main|Wigner effect}} Once commissioned and settled into operations, Pile 2 experienced a mysterious rise in core temperature. Unlike the Americans and the Soviets, the British had little experience with the behaviour of graphite when exposed to neutrons. Hungarian-American physicist [[Eugene Wigner]] had discovered that graphite, when bombarded by neutrons, suffers dislocations in its crystalline structure, causing a build-up of potential energy. This energy, if allowed to accumulate, could escape spontaneously in a powerful rush of heat. The Americans had long warned about this problem, and had even warned that such a discharge could lead to a fire in the reactor.<ref name="Disaster 1999">{{cite web |author1=BBC|author-link1=BBC |title=Disaster β The Windscale Fire |url=https://www.bbc.co.uk/programmes/p00fk59l |publisher=BBC Two |location=Series 3 |format=TV Documentary |date=1999}}</ref> The British design, thus, had a fatal flaw.<ref name="Disaster 1999" /> The sudden bursts of energy worried the operators, who turned to the only viable solution, heating the reactor core in a process known as [[Annealing (metallurgy)|annealing]]. When graphite is heated beyond {{convert|250|Β°C}} it becomes plastic, and the Wigner dislocations can relax into their natural state. This process was gradual and caused a uniform release which spread throughout the core.<ref>{{cite web|url=http://www.iaea.org/inisnkm/nkm/aws/htgr/fulltext/manchester_07.pdf|title=Inert Annealing of Irradiated Graphite by Inductive Heating |author=W. Botzem, J. WΓΆrner (NUKEM Nuklear GmbH, Alzenau, Germany)|date=14 June 2001}}</ref> This improvised process was carried out regularly at Windscale, but over the years it had become increasingly difficult to force the stored energy out.<ref name="Disaster 1999" /> The Wigner energy release, details of the reactors and other details of the accident are discussed by Foreman in his review of reactor accidents.<ref>M.R.StJ. Foreman, Reactor accident chemistry an update, ''Cogent Chemistry'', 2018, volume 4, 1450944, {{doi|10.1080/23312009.2018.1450944}}</ref> ==Tritium production== [[Winston Churchill]] publicly committed the UK to building a [[hydrogen bomb]], and gave the scientists a tight schedule in which to do so. This was then hastened after the US and USSR began working on a test ban and possible disarmament agreements which would begin to take effect in 1958. To meet this deadline there was no chance of building a new reactor to produce the required [[tritium]], so the Windscale Pile 1 fuel loads were modified by adding [[enriched uranium]] and [[lithium]]-[[magnesium]], the latter of which would produce tritium during neutron bombardment.{{sfn|Windscale|loc=46.20}} All of these materials were highly flammable, and Windscale staff raised the issue of the inherent dangers of the new fuel loads. These concerns were brushed aside. When their [[Operation Grapple#Individual explosions|first H-bomb test]] failed, the decision was made to build a large [[Boosted fission weapon|fusion-boosted-fission weapon]] instead. This required huge quantities of tritium, five times as much, and it had to be produced as rapidly as possible as the test deadlines approached. To boost the production rates, they used a trick that had been successful in increasing plutonium production in the past: by reducing the size of the cooling fins on the fuel cartridges, they were able to increase the temperature of the fuel loads, which caused a small but useful increase in neutron enrichment rates. This time they also took advantage of the smaller fins by building larger interiors in the cartridges, allowing more fuel in each one. These changes triggered further warnings from the technical staff, which were again brushed aside. [[Christopher Hinton, Baron Hinton of Bankside|Christopher Hinton]], Windscale's director, left in frustration.{{sfn|Windscale|loc=49:45}} After a first successful production run of tritium in Pile 1, the heat problem was presumed to be negligible and full-scale production began. But by raising the temperature of the reactor beyond the design specifications, the scientists had altered the normal distribution of heat in the core, causing hot spots to develop in Pile 1. These were not detected because the [[thermocouple]]s used to measure the core temperatures were positioned based on the original heat distribution design, and were not measuring the parts of the reactor which became hottest. ==Accident== {{more citations needed|section|date=October 2019}}<!--several subsections have no footnotes--> ===Ignition=== On 7 October 1957, Pile 1 reached the 40,000 MWh mark, and it was time for the 9th [[Wigner effect|Wigner release]].{{sfn|Windscale|loc=57:20}} This had been carried out eight times in the past, and it was known that the cycle would cause the entire reactor core to heat up evenly. During this attempt the temperatures anomalously began falling across the reactor core, except in channel 20/53, whose temperature was rising.{{sfn|Windscale|loc=58:20}} Concluding that 20/53 was releasing energy but none of the others were, on the morning of 8 October the decision was made to try a second Wigner release. This attempt caused the temperature of the entire reactor to rise, indicating a successful release.{{sfn|Windscale|loc=59:00}} Early in the morning of 10 October it was suspected that something unusual was going on. The temperature in the core was supposed to gradually fall as Wigner energy release ended, but the monitoring equipment showed something more ambiguous, and one thermocouple indicated that core temperature was instead rising. As this process continued, the temperature continued to rise and eventually reached {{convert|400|Β°C|-1}}.{{sfn|Windscale|loc=1:00:30}} In an effort to cool the pile, the speed of the cooling fans was increased. Radiation detectors in the chimney then indicated a release, and it was assumed that a cartridge had burst. This was not a fatal problem, and had happened in the past. Unknown to the operators, the cartridge had not just burst, but caught fire, and this was the source of the anomalous heating in channel 20/53, not a Wigner release.{{sfn|Windscale|loc=1:00:30}} ===Fire=== Speeding up the fans increased the airflow in the channel, fanning the flames. The fire spread to surrounding fuel channels, and soon the radioactivity in the chimney was rapidly increasing.{{sfn|Windscale|loc=1:02:00}} A foreman, arriving for work, noticed smoke coming out of the chimney. The core temperature continued to rise, and the operators began to suspect the core was on fire.{{sfn|Windscale|loc=1:03:00}} Operators tried to examine the pile with a remote scanner but it had jammed. Tom Hughes, second in command to the Reactor Manager, suggested examining the reactor personally and so he and another operator, both clad in protective gear, went to the charge face of the reactor. A fuel channel inspection plug was taken out close to a thermocouple registering high temperatures and it was then that the operators saw that the fuel was red hot. "An inspection plug was taken out," said Tom Hughes in a later interview, "and we saw, to our complete horror, four channels of fuel glowing bright cherry red." There was now no doubt that the reactor was on fire, and had been for almost 48{{nbsp}}hours. Reactor Manager [[Tom Tuohy]]<ref name="Tom Tuohy">{{Cite news|title = Windscale Manager who doused the flames of 1957 fire β Obituary in The Independent |url = https://www.independent.co.uk/news/obituaries/thomas-tuohy-windscale-manager-who-doused-the-flames-of-the-1957-fire-800546.html |access-date = 27 March 2008 | location=London | date=26 March 2008}}</ref> donned full protective equipment and breathing apparatus and scaled the {{convert|80|ft|adj=on}} ladder to the top of the reactor building, where he stood atop the reactor lid to examine the rear of the reactor, the discharge face. By doing so, he was risking his life by exposing himself to a large amount of radiation.<ref name="Disaster 1999" /> He reported a dull red luminescence visible, lighting up the void between the back of the reactor and the rear containment.<ref name="auto1">{{Cite book| last = Arnold | first = L. | title = Windscale 1957: Anatomy of a Nuclear Accident | publisher = [[Macmillan Publishers|Macmillan]] | year = 1992 | isbn = 978-0333650363 | page = 235 }}</ref> Red hot fuel cartridges were glowing in the fuel channels on the discharge face. He returned to the reactor upper containment several times throughout the incident, at the height of which a fierce conflagration was raging from the discharge face and playing on the back of the reinforced concrete containment β concrete whose specifications required that it be kept below a certain temperature to prevent its collapse.<ref name="auto1"/> ===Initial fire fighting attempts=== Operators were unsure what to do about the fire. First, they tried to blow the flames out by running the fans at maximum speed, but this fed the flames. Tom Hughes and his colleague had already created a [[fire break]] by ejecting some undamaged fuel cartridges from around the blaze, and Tom Tuohy suggested trying to eject some from the heart of the fire by bludgeoning the melted cartridges through the reactor and into the cooling pond behind it with scaffolding poles.<ref name="Disaster 1999" /> This proved impossible and the fuel rods refused to budge, no matter how much force was applied.<ref name="Disaster 1999" /> The poles were withdrawn with their ends red hot; one returned dripping molten metal.<ref name="Disaster 1999" /> Hughes knew this had to be molten irradiated uranium, causing serious radiation problems on the charge hoist itself. "It [the exposed fuel channel] was white hot," said Hughes' colleague on the charge hoist with him, "it was just white hot. Nobody, I mean, nobody, can believe how hot it could possibly be." ===Carbon dioxide=== Next, the operators tried to extinguish the fire using [[carbon dioxide]].<ref name="Disaster 1999" /> The new gas-cooled [[Sellafield#Calder Hall nuclear power station|Calder Hall]] reactors on the site had just received a delivery of 25{{nbsp}}tonnes of liquid carbon dioxide and this was rigged up to the charge face of Windscale Pile 1, but there were problems getting it to the fire in useful quantities. "So we got this rigged up," Tuohy recounted, "and we had this poor little tube of carbon dioxide and I had absolutely no hope it was going to work."<ref name="Disaster 1999" /> In the end, it was found to have no effect.<ref name="Disaster 1999" /> ===Use of water=== At 01:30 hours on Friday 11 October, when the fire was at its worst, eleven tons of uranium were ablaze. The magnesium in the cartridges was now ablaze, with one thermocouple registering {{convert|3100|Β°C|-2}}, and the biological shield around the stricken reactor was now in severe danger of collapse. Faced with this crisis, Tuohy suggested using water. This was risky, as molten metal oxidises in contact with water, stripping oxygen from the water molecules and leaving free hydrogen, which could mix with incoming air and explode, tearing open the weakened containment. Faced with a lack of other options, the operators decided to go ahead with the plan.{{sfn|Windscale|loc=1:10:30}} About a dozen fire hoses were hauled to the charge face of the reactor; their nozzles were cut off and the lines themselves connected to scaffolding poles and fed into fuel channels about {{convert|1|m|ft|0}} above the heart of the fire. Tuohy once again hauled himself onto the reactor shielding and ordered the water to be turned on, listening carefully at the inspection holes for any sign of a hydrogen reaction as the pressure was increased. The water was unsuccessful in extinguishing the fire, requiring further measures to be taken. ===Shutting off air=== Tuohy then ordered everyone out of the reactor building except himself and the fire chief in order to shut off all cooling and ventilating air entering the reactor. By this time, an evacuation of the local area was being considered, and Tuohy's action was the workers' last gamble.<ref name="Disaster 1999" /> Tuohy climbed up several times and reported watching the flames leaping from the discharge face slowly dying away. During one of the inspections, he found that the inspection plates{{snd}}which were removed with a metal hook to facilitate viewing of the discharge face of the core{{snd}}were stuck fast. This, he reported, was due to the fire trying to suck air in from wherever it could.<ref name="Disaster 1999" /> "I have no doubt it was even sucking air in through the chimney at this point to try and maintain itself," he remarked in an interview. Finally he managed to pull the inspection plate away and was greeted with the sight of the fire dying away. "First the flames went, then the flames reduced and the glow began to die down," he described, "I went up to check several times until I was satisfied that the fire was out. I did stand to one side, sort of hopefully," he went on to say, "but if you're staring straight at the core of a shut down reactor you're going to get quite a bit of radiation." (Tuohy lived to the age of 90, despite his exposure.) Water was kept flowing through the pile for a further 24 hours until it was completely cold. After the water hoses were turned off, the now contaminated water spilled out onto the forecourt.<ref name="Disaster 1999" /> The reactor tank itself has remained sealed since the accident and still contains about 15{{nbsp}}tons of uranium fuel. It was thought that the remaining fuel could still reignite if disturbed, due to the presence of [[Pyrophoricity|pyrophoric]] [[Uranium(III) hydride|uranium hydride]] formed in the original water dousing.<ref>"[http://www.theengineer.co.uk/in-depth/getting-to-the-core-issue/267995.article Getting to the core issue] {{Webarchive|url=https://web.archive.org/web/20151017101712/http://www.theengineer.co.uk/in-depth/getting-to-the-core-issue/267995.article |date=17 October 2015 }}", ''The Engineer'', 14 May 2004.</ref> Subsequent research, conducted as part of the decommissioning process, has ruled out this possibility.<ref name=NuSAC-p18>{{Cite web |url=http://www.hse.gov.uk/aboutus/meetings/iacs/nusac/131005/p18.pdf |title=Meeting of RG2 with Windscale Pile 1 Decommissioning Project Team |date=29 September 2005 |publisher=Nuclear Safety Advisory Committee |id=NuSAC(2005)P 18 |access-date=26 November 2008 |archive-date=19 October 2020 |archive-url=https://web.archive.org/web/20201019181632/https://www.hse.gov.uk/aboutus/meetings/iacs/nusac/131005/p18.pdf |url-status=dead }}</ref> The pile is not scheduled for final decommissioning until 2037. ==Aftermath== ===Radioactive release=== There was a release into the atmosphere of radioactive material that spread across the UK and Europe.<ref name="bbc-7030536"/> The fire released an estimated 740{{nbsp}}[[becquerel|terabecquerels]] (20,000{{nbsp}}[[Curie (unit)|curie]]s) of [[iodine-131]], as well as 22{{nbsp}}[[terabecquerel|TBq]] (594{{nbsp}}curies) of [[caesium-137]] and 12,000{{nbsp}}TBq (324,000{{nbsp}}curies) of [[Isotopes of xenon#Xenon-133|xenon-133]], among other radionuclides.<ref name="cooper">{{cite book |title=Radioactive releases in the environment: impact and assessment |publisher=Wiley |year=2003 |page=150 |url=https://books.google.com/books?id=jhB_jaj-uAgC&pg=PA150 |author1=John R. Cooper |author2=Keith Randle |author3=Ranjeet S. Sokhi |isbn=978-0471899235}}. ''Citing:'' {{cite journal |title=An assessment of the radiological impact of the Windscale reactor fire, October 1957 |publisher=National Emergency Training Center |year=1984 |author1=M. J. Crick |author2=G. S. Linsley |journal=International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine |volume=46 |issue=5 |pages=479β506 |isbn=978-0859511827|pmid=6335136 |doi=10.1080/09553008414551711 }}</ref> The UK government under Harold Macmillan ordered original reports into the fire to be heavily censored and information about the incident to be kept largely secret, and it later came to light that small but significant amounts of the highly dangerous radioactive isotope [[polonium-210]] were released during the fire.<ref name="Disaster 1999" /><ref name="2007 Telegraph" /> Later reworking of contamination data has shown national and international contamination may have been higher than previously estimated.<ref name="bbc-7030536" >{{Cite news |url=http://news.bbc.co.uk/1/hi/sci/tech/7030536.stm |title=Windscale fallout underestimated |publisher=[[BBC News]] |date=6 October 2007 |first=Rebecca |last=Morelle |author-link=Rebecca Morelle }}</ref> For comparison, the [[Chernobyl disaster|1986 Chernobyl explosion]] released approximately 1,760,000{{nbsp}}TBq of iodine-131; 79,500{{nbsp}}TBq caesium-137; 6,500,000{{nbsp}}TBq xenon-133; 80,000{{nbsp}}TBq [[strontium-90]]; and 6,100{{nbsp}}TBq plutonium, along with about a dozen other radionuclides in large amounts.<ref name="cooper"/> The [[Three Mile Island accident]] in 1979 released 25 times more [[xenon-135]] than Windscale, but much less iodine, caesium and strontium.<ref name="cooper"/> Estimates by the Norwegian Institute of Air Research indicate that atmospheric releases of xenon-133 by the [[Fukushima Daiichi nuclear disaster]] were broadly similar to those released at Chernobyl, and thus well above the Windscale fire releases.<ref name=nature-20111025>{{cite journal |title=Fallout forensics hike radiation toll |author=Geoff Brumfiel |date=25 October 2011 |journal=Nature |volume=478 |issue=7370 |doi=10.1038/478435a |bibcode = 2011Natur.478..435B |pages=435β436 |pmid=22031411|doi-access=free }}</ref> {| class="wikitable" |+ Radioactive releases compared (TBq) |- ! Material ! Half life ! style="width: 150px;" | Windscale ! style="width: 150px;" | [[Three Mile Island accident|Three Mile Island]] (compared to Windscale) ! style="width: 150px;" | [[Chernobyl disaster|Chernobyl]] ! style="width: 150px;" | [[Fukushima Daiichi nuclear disaster|Fukushima Daiichi]]<br />(atmospheric) |- | [[Iodine-131]] | align="right" | 8.0197 days | align="right" | 740 | align="right" | much less | align="right" | 1,760,000 | align="right" | 130,000 |- | [[Caesium-137]] | align="right" | 30.17 years | align="right" | 22 | align="right" | much less | align="right" | 79,500 | align="right" | 35,000 |- | [[Xenon-133]] | align="right" | 5.243 days | align="right" | 12,000 | | align="right" | 6,500,000 | align="right" | 17,000,000 |- | [[Xenon-135]] | align="right" | 9.2 hours | | align="right" | 25 Γ Windscale | | |- | [[Strontium-90]] | align="right" | 28.79 years | | align="right" | much less | align="right" | 80,000 |- | [[Plutonium-239]] | align="right" | 24,110 years | align="right" | 0.08<ref>{{cite journal | url=https://www.sciencedirect.com/science/article/abs/pii/S1352231007000143 | doi=10.1016/j.atmosenv.2006.12.049 | title=Atmospheric emissions from the Windscale accident of October 1957 | journal=Atmospheric Environment | date=June 2007 | volume=41 | issue=18 | pages=3904β3920 | last1=Garland | first1=J. A. | last2=Wakeford | first2=R. | bibcode=2007AtmEn..41.3904G | url-access=subscription }}</ref> | align="right" | | align="right" | 6,100 | align="right" | |- | [[Polonium-210]] | align="right" | 138.376 days | align="right" | 8.8<ref name="cooper" /> | align="right" | | align="right" | | align="right" | |} The presence of the chimney [[scrubber]]s at Windscale was credited with maintaining partial containment and thus minimizing the radioactive content of the smoke that poured from the chimney during the fire. These scrubbers were installed at great expense on the insistence of John Cockcroft and were known as Cockcroft's Folly until the 1957 fire.<ref name="Cockroft's Follies" /> ===Health effects=== Of particular concern at the time was the radioactive isotope iodine-131, with a [[half-life]] of about eight days. Iodine taken up by the human body is preferentially incorporated in the [[thyroid]]. As a result, consumption of iodine-131 can give an increased chance of later suffering [[Thyroid cancer|cancer of the thyroid]]. In particular, children are especially at risk due to their thyroids not being fully developed.<ref name="1990 Doc" /> In the days following the disaster, tests were carried out on local milk samples, and the milk was found to be dangerously contaminated with iodine-131.<ref>{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |pages=55β56 |edition=2nd}}</ref> It was thus decided that consumption of milk from the surrounding area should be stopped, and eventually restrictions were put in place on the consumption of milk from the {{convert|200|sqmi|adj=on}} area surrounding the piles.<ref name="Arnold 1995">{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |page=61 |edition=Second}}</ref> Milk from about 500 km<sup>2</sup> of nearby countryside was destroyed (diluted a thousandfold and dumped in the Irish Sea) for about a month.<ref name="1990 Doc" /> However, no one was evacuated from the surrounding area. The original report into the incident, the Penney Report, was ordered to be heavily censored by prime minister [[Harold Macmillan]].<ref>{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |page=83 |edition=2nd}}</ref><ref name="2007 Telegraph" /> Macmillan feared that the news of the incident would shake public confidence in nuclear power and damage British-American nuclear relations.<ref name="2007 Telegraph" /> As a result, information about the release of radioactive fallout was kept hidden by the government.<ref name="2007 Telegraph" /> It was not until 1988 that Penney's report was released in full.<ref>{{cite news |last1=Lohr |first1=Steve |title=Britain Suppressed Details of '57 Atomic Disaster |url=https://www.nytimes.com/1988/01/02/world/britain-suppressed-details-of-57-atomic-disaster.html |access-date=12 July 2020 |work=The New York Times |date=2 January 1988}}</ref> Partly because of this censorship, consensus on the extent of the long-term health impacts caused by the radiation leak has changed over time as more information on the incident has come to light.<ref name="auto">{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |page=147 |edition=2nd}}</ref> The release of the highly dangerous radioactive isotope polonium-210, which had been covered up at the time, was not factored into government reports until 1983, when it was estimated that the fallout had caused 33 [[cancer]] fatalities in the long-term.<ref name="auto"/> These deaths were attributed not only to thyroid cancer, but also to [[lung cancer]].<ref>{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |pages=146β152 |edition=2nd}}</ref> An updated 1988 UK government report (the most recent government estimate) estimated that 100 fatalities "probably" resulted from cancers as a result of the releases over 40 to 50 years.<ref name="auto2">{{cite book |last1=Arnold |first1=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |page=152 |edition=2nd}}</ref><ref>{{cite news |last1=Brown |first1=Paul |title=Windscale's terrible legacy |url=https://www.theguardian.com/uk/1999/aug/26/3 |access-date=30 June 2020 |work=The Guardian |date=26 August 1999}}</ref> The government report also estimated that 90 non-fatal cancers were caused by the incident, as well as 10 [[genetic disorder|hereditary defects]].<ref name="auto2"/> Other studies of additional cancer cases and mortality resulting from the radiological release have produced differing results.<ref>{{cite web |url=https://www.bbc.co.uk/cumbria/content/articles/2007/10/02/windscale_outside_feature.shtml |title=The view from outside Windscale in 1957 |date=2 October 2007 |publisher=[[BBC]] |access-date=17 September 2013}}</ref> In 2007, the 50-year anniversary of the fire, new academic research into the health effects of the incident was published by Richard Wakeford, a visiting professor at the [[University of Manchester|University of Manchester's]] Dalton Nuclear Institute, and by former [[UK Atomic Energy Authority]] researcher John Garland.<ref name="Irish Times Windscale" /> Their study concluded that because the amount of radiation released in the fire could be double the previous estimates, and that the radioactive plume travelled further east, there were likely to be 100 to 240 cancer fatalities in the long term as a result of the fire.<ref name="2007 Telegraph" /><ref name="Irish Times Windscale" /> A 2010 study of workers directly involved in the cleanup{{mdash}}and thus expected to have seen the highest exposure rates{{mdash}}found no significant long-term health effects from their involvement.<ref name="iopscience-2010"/><ref name="iopscience-2000"/> ===Salvage operations=== The reactor was unsalvageable; where possible, the fuel rods were removed, and the reactor bioshield was sealed and left intact. Approximately 6,700 fire-damaged fuel elements and 1,700 fire-damaged isotope cartridges remain in the pile. The damaged reactor core was still slightly warm as a result of continuing nuclear reactions. In 2000 it was estimated that the core still contained * 1470 TBq (4.1 [[gram|g]]) of tritium (half-life 12 years), * 213 TBq (69 g) of caesium-137 (half-life 30 years), * 189 TBq (37 g) each of strontium-90 (half-life 29 years) and its daughter [[yttrium-90]], * 9.12 TBq (4.0 kg) of [[plutonium-239]] (half-life 24,100 years), * 1.14 TBq (0.29 g) of plutonium-241 (half-life 14 years) as well as smaller activities of other [[radionuclide]]s.<ref>Details of the levels and nature of the radioactivity remaining in the core can be seen at {{cite journal|last1=D.G. Pomfret|title=Safety and Dose Management During Decommissioning of a Fire Damaged Nuclear Reactor|journal=IRPA-10 Proceedings of the 10th International Congress of the International Radiation Protection Association on Harmonization of Radiation, Human Life and the Ecosystem|date=2000|url=http://www.irpa.net/irpa10/cdrom/00322.pdf}} Table 1, p. 6.</ref> Windscale Pile 2, though undamaged by the fire, was considered too unsafe for continued use. It was shut down shortly afterwards. No air-cooled reactors have been built since. The final removal of fuel from the damaged reactor was scheduled to begin in 2008 and to continue for a further four years.<ref name=NuSAC-p18 /> Inspections showed that there had not been a graphite fire, and the damage to the graphite was localised, caused by severely overheated uranium fuel assemblies nearby.<ref name=NuSAC-p18/> ===Board of inquiry=== A [[Public inquiry|board of inquiry]] met under the chairmanship of [[William Penney, Baron Penney|Sir William Penney]] from 17 to 25 October 1957. The "Penney Report" was submitted to the Chairman of the [[United Kingdom Atomic Energy Authority]] and formed the basis of the [[White paper#Government papers|Government White Paper]] submitted to Parliament in November 1957. In January 1988, it was released by the [[Public Record Office]]. In 1989, a revised transcript was released, following work to improve the transcription of the original recordings.<ref name="bbc-7030281">{{Cite news |url=http://news.bbc.co.uk/1/hi/sci/tech/7030281.stm |title=Windscale: A nuclear disaster |publisher=[[BBC News]] |author=Paul Dwyer |date=5 October 2007 }}</ref><ref>{{Cite news |title=Proceedings into the fire at Windscale Pile Number One (1989 revised transcript of the "Penney Report") |url=http://news.bbc.co.uk/1/shared/bsp/hi/pdfs/05_10_07_ukaea.pdf |publisher=[[United Kingdom Atomic Energy Authority|UKAEA]] |date= 18 April 1989 }}</ref> Penney reported on 26 October 1957, 16 days after the fire was extinguished,<ref>{{Cite web|url=https://www.neimagazine.com/features/featurewhen-windscale-burned/|title=When Windscale burned|publisher=Nuclear Engineering International|website=www.neimagazine.com|access-date=14 January 2024}}</ref> and reached four conclusions: * "The primary cause of the accident had been the second nuclear heating on 8 October, applied too soon and too rapidly. * Steps taken to deal with the accident, once discovered, were "prompt and efficient and displayed considerable devotion to duty on the part of all concerned". * Measures taken to deal with the consequences of the accident were adequate and there had been "no immediate damage to health of any of the public or of the workers at Windscale". It was most unlikely that any harmful effects would develop. But the report was very critical of technical and organisational deficiencies. * A more detailed technical assessment was needed, leading to organisational changes, clearer responsibilities for health and safety, and better definition of radiation dose limits." [[File:Sellafield.jpg|thumb|Pile 1 being dismantled in 2018]] Those who had been directly involved in the events were heartened by Penney's conclusion that the steps taken had been "prompt and efficient" and had "displayed considerable devotion to duty". Some considered that the determination and courage shown by Thomas Tuohy, and the critical role he played in the aversion of complete disaster, had not been properly recognised. Tuohy died on 12 March 2008, having never received any kind of public recognition for his decisive actions.<ref name="Tom Tuohy" /> The Board of Inquiry's report concluded officially that the fire had been caused by "an error of judgment" by the same people who then risked their lives to contain the blaze. The grandson of Harold Macmillan, prime minister at the time of the fire, later suggested that the US Congress might have vetoed plans of Macmillan and US president [[Dwight Eisenhower]] for [[US-UK Mutual Defence Agreement|joint nuclear weapons development]] if they had known that the accident was due to reckless decisions by the UK government and that Macmillan had covered up what really happened. Tuohy said of the officials who told the US that his staff had caused the fire that "they were a shower of bastards".<ref>{{Cite web|url=https://www.telegraph.co.uk/news/obituaries/1582801/Tom-Tuohy.html|title=Tom Tuohy|website=www.telegraph.co.uk|date=26 March 2008 }}</ref> The Windscale site was [[decontamination|decontaminated]] and is still in use. Part of the site was later renamed [[Sellafield]] after being transferred to [[BNFL]], and the whole site is now owned by the [[Nuclear Decommissioning Authority]]. ==Comparison with other accidents== The release of radiation by the Windscale fire was greatly exceeded by the Chernobyl disaster in 1986, but the fire has been described as the worst reactor accident until Three Mile Island in 1979. [[Epidemiology|Epidemiological]] estimates put the number of additional cancers caused by the Three Mile Island accident at not more than one; only Chernobyl produced immediate casualties.<ref>{{cite web|url=http://www.damninteresting.com/the-windscale-disaster|title=The Windscale Disaster|date=7 May 2007|author=Gerry Matlack}}</ref> Three Mile Island was a civilian reactor, and Chernobyl primarily so, both being used for electrical power production. By contrast, Windscale was used for purely military purposes. Other military reactors have produced immediate, known casualties, such as the 1961 incident at the [[SL-1]] plant in [[Idaho]] which killed three operators. The accident at Windscale was contemporary to the [[Kyshtym disaster]], which occurred on 29 September 1957 at the [[Mayak]] plant in the [[Soviet Union]], when the failure of the cooling system for a tank storing tens of thousands of tons of dissolved nuclear waste resulted in a non-nuclear explosion. The Windscale fire was retrospectively graded as level 5, an accident with wider consequences, on the [[International Nuclear Event Scale]].<ref name="Richard Black"/> ==Irish sea contamination== In 1968 a paper was published in the journal ''[[Nature (journal)|Nature]]'', on a study of radioisotopes found in [[oyster]]s from the Irish Sea, using [[gamma spectroscopy]]. The oysters were found to contain <sup>141</sup>[[isotopes of cerium|Ce]], [[Isotopes of cerium|<sup>144</sup>Ce]], <sup>103</sup>[[isotopes of ruthenium|Ru]], [[Isotopes of ruthenium|<sup>106</sup>Ru]], [[Caesium-137|<sup>137</sup>Cs]], <sup>95</sup>[[isotopes of zirconium|Zr]] and <sup>95</sup>[[isotopes of niobium|Nb]]. A zinc [[neutron activation|activation product]] (<sup>65</sup>[[isotopes of zinc|Zn]]) was also found; this is thought to be due to the corrosion of [[Magnox (alloy)|magnox]] fuel cladding in [[spent fuel pool|cooling ponds]].<ref>{{cite journal |title= Detection, Estimation and Radiological Significance of Silver-110m in Oysters in the Irish Sea and the Blackwater Estuary|author=A. Preston, J. W. R. Dutton & B. R. Harvey |journal= Nature|volume= 218|issue= 5142|pages= 689β690|date=18 May 1968 | doi=10.1038/218689a0|bibcode=1968Natur.218..689P|s2cid=4205987}}</ref> Harder-to-detect pure [[alpha particle|alpha]] and [[beta decay|beta]] decaying radionuclides were also present, such as [[Strontium-90|<sup>90</sup>Sr]] and [[plutonium-239|<sup>239</sup>Pu]], but these do not appear in gamma spectroscopy as they do not generate any appreciable [[gamma ray]]s as they decay. ==In popular culture== ===Television=== In 1983, [[Yorkshire Television]] released a documentary focusing on the health effects of the fire, entitled ''Windscale β the Nuclear Laundry''.<ref name="Arnold 1995" /> It alleged that the clusters of [[leukaemia]] in children around Windscale were attributable to the radioactive fallout from the fire.<ref>{{cite book |last=Arnold |first=Lorna |title=Windscale 1957: Anatomy of a Nuclear Accident |date=1995 |publisher=Palgrave Macmillan UK |location=London |isbn=978-1349240081 |pages=147β148 |edition=2nd}}</ref> In 1990, the first of three BBC documentaries on the incident was shown. Titled ''Our Reactor is on Fire'', the documentary featured interviews with key plant workers, including Tom Tuohy, deputy general manager of [[Windscale]] at the time of the incident.<ref>{{cite web |title=Our Reactor is on Fire (1990) |url=https://www.bfi.org.uk/films-tv-people/4ce2b7a4077bc |archive-url=https://web.archive.org/web/20200705025215/https://www.bfi.org.uk/films-tv-people/4ce2b7a4077bc |url-status=dead |archive-date=5 July 2020 |website=The BFI |access-date=12 July 2020}}</ref> In 1999, the [[BBC]] produced an educational [[drama-documentary]] film about the fire as a 30-minute episode of ''Disaster'' (Series 3) titled ''The Atomic Inferno''. It was subsequently released on [[DVD]].<ref>{{cite web |url=http://www.bbcactivevideoforlearning.com/1/SeriesDetails.aspx?SeriesID=818 |title=Disaster β Series 3 |year=1999 |website=bbcactivevideoforlearning.com |access-date=19 April 2011 |archive-date=9 March 2012 |archive-url=https://web.archive.org/web/20120309224104/http://www.bbcactivevideoforlearning.com/1/SeriesDetails.aspx?SeriesID=818 |url-status=dead }}</ref> In 2007, the BBC produced another documentary about the accident titled "Windscale: Britainβs Biggest Nuclear Disaster",<ref name="bbc-7030281"/> which investigates the history of the first British nuclear facility and its role in the development of [[nuclear weapons]]. The documentary features interviews with key scientists and plant operators, such as Tom Tuohy. The documentary suggests that the fire β the first fire in any nuclear facility β was caused by the relaxation of safety measures, as a result of pressure from the British government to quickly produce [[fissile material]]s for nuclear weapons.<ref name=reckless>{{cite web |url=http://www.wsws.org/articles/2008/apr2008/nucl-a29.shtml |title=BBC documentary reveals government reckless in drive for the production of nuclear weapons |publisher=[[World Socialist Web Site|WSWS]] |date=29 April 2008}}</ref> ===Video games=== The 2025 [[video game]] ''[[Atomfall]]'' is set in an [[alternate history]] 1960s where the Windscale fire turned much of the Lake District into a radioactive quarantine zone. ==Isotope cartridges== The following substances were placed inside metal cartridges and subjected to neutron irradiation to create radioisotopes. Both the target material and some of the product isotopes are listed below. Of these, the polonium-210 release made the most significant contribution to the collective dose on the general population.<ref>{{Cite journal| journal=Int J Radiat Biol Relat Stud Phys Chem Med|date=November 1984| volume=46| issue=5| pages=479β506| title=An assessment of the radiological impact of the Windscale reactor fire, October 1957| last= Crick| first= MJ|author2=Linsley GS | doi=10.1080/09553008414551711| pmid=6335136}}</ref> {{div col}} * Lithium-magnesium [[alloy]]: tritium * [[Aluminium nitride]]: [[carbon-14]] * [[Potassium chloride]]: [[chlorine-36]] * [[Cobalt]]: [[cobalt-60]] * [[Thulium]]: [[thulium-170]] * [[Thallium]]: [[thallium-204]] * [[Bismuth oxide]]: polonium-210 * [[Thorium]]: [[uranium-233]] {{div col end}} == See also == {{portal|Nuclear technology}} * [[RAF Lakenheath nuclear weapons accidents]] ==Notes== {{Reflist}} ==References== {{refbegin|30em}} * {{cite book |last = Arnold |first = Lorna |author-link=Lorna Arnold |year=2007 |title=Windscale, 1957: Anatomy of a Nuclear Accident |location=New York |publisher=Palgrave Macmillan |isbn=978-0230573178 |oclc=471012298 }} * {{cite book |last1=Baylis |first1=John |first2= Kristan |last2=Stoddart |year=2015 |title=The British Nuclear Experience: The Roles of Beliefs, Culture and Identity |location=Oxford |publisher=Oxford University Press |isbn=978-0198702023|oclc=900506637 }} * {{cite book |last=Cathcart |first=Brian |title=Test of Greatness: Britain's Struggle for the Atom Bomb |publisher=John Murray |year=1995 |isbn=978-0719552250|location=London |oclc=31241690 }} * {{cite journal |last=Goldberg |first=Alfred |jstor=2610825 |title=The Atomic Origins of the British Nuclear Deterrent |journal=International Affairs |date=July 1964 |volume=40 |issue=3 |pages=409β429 |doi=10.2307/2610825 }} * {{cite book |last=Gowing |first=Margaret |author-link=Margaret Gowing |title=Britain and Atomic Energy 1939β1945 |publisher=Macmillan |year=1964 |location=London |oclc=3195209 }} * {{cite book |last1 = Gowing |first1 = Margaret |author-link=Margaret Gowing |first2 = Lorna |last2 = Arnold |author-link2=Lorna Arnold |year = 1974a |title=Independence and Deterrence: Britain and Atomic Energy, 1945β1952, Vol. 1, Policy Making |publisher= Macmillan |location = London |isbn = 978-0333157817 |oclc = 611555258 }} * {{cite book |last1 = Gowing |first1 = Margaret |author-link=Margaret Gowing |first2 = Lorna |last2 = Arnold |author-link2=Lorna Arnold |year=1974b |title=Independence and Deterrence: Britain and Atomic Energy, 1945β1952, Vol. 2, Policy and Execution |location= London |publisher=Palgrave Macmillan|isbn=978-0333166956|oclc= 946341039 }} * {{cite journal |last1=Penney |first1=William |author-link=William Penney, Baron Penney |first2=Basil F. J. |last2=Schonland |author-link2=Basil Schonland |first3=J. M. |last3=Kay |first4=Jack |last4=Diamond |author-link4=Jack Diamond, Baron Diamond |first5=David E. H. |last5=Peirson |title=Report on the accident at Windscale No. 1 Pile on 10 October 1957 |journal=Journal of Radiological Protection |volume=37 |issue=3 |pages=780β796 |year=2017 |doi= 10.1088/1361-6498/aa7788|pmid=28854153|bibcode=2017JRP....37..780P |doi-access=free }} * {{cite journal | last1 = Wakeford | first1 = R. | year = 2007 | title = The Windscale reactor accident β 50 years on | journal = Journal of Radiological Protection | volume = 27 | issue = 3| pages = 211β215 | doi=10.1088/0952-4746/27/3/e02| pmid = 17768324 | bibcode = 2007JRP....27..211W | s2cid = 2115012 }} * {{cite book |last=Wynn |first=Humphrey |year=1997 |title=RAF Strategic Nuclear Deterrent Forces, Their Origins, Roles and Deployment, 1946β1969. A Documentary History |publisher=The Stationery Office |location=London |isbn=978-0117728332}} * {{cite AV media |publisher=BBC |url=https://www.youtube.com/watch?v=x_pWgRx7lno |archive-url=https://ghostarchive.org/varchive/youtube/20211213/x_pWgRx7lno |archive-date=13 December 2021 |url-status=live|title= Windscale: Britain's Biggest Nuclear Disaster |date=8 October 2007 |ref=CITEREFWindscale}}{{cbignore}} {{refend}} ==Further reading== * [http://iopscience.iop.org/journal/0952-4746/page/Focus_on_Kyshtym_and_Windscale Journal of Radiological Protection Society for Radiological Protection, Focus on the 60th anniversary of the Kyshtym Accident and the Windscale Fire] * "Windscale fallout blew right across Europe", Rob Edwards. ''[[New Scientist]]'', 6 October 2007. * "Chernobyl: worst but not first", [[Walter C. Patterson]]. ''[[Bulletin of the Atomic Scientists]]'', August/September 1986. * [https://books.google.com/books?id=nCK75XBrzKgC&dq=%22secrets+of+the+windscale+fire+revealed%22&pg=PA911 'Secrets of the Windscale fire revealed', F. Pearce. ''New Scientist'' vol. 99, 29 September 1983 p. 911] * 'Windscale; increased cancer incidence alleged', T. Beardsley. Nature vol 306 Issue 5938 November 3, 1983 p. 5 * "[https://books.google.com/books?id=Dy0DAAAAMBAJ&pg=PA92 Accident at Windscale: World's First Atomic Alarm]", Hartley Howe. ''Popular Science'', October 1958, Vol. 173, No. 4. * "An Assessment of the Radiological Impact of the Windscale Reactor Fire", M.J. Crick, G.S. Linsley. ''NRPB Reports'', Oct. 1957, Nov. 1982. * ''An airborne radiometric survey of the Windscale area, 19β22 October'', 1957 . A.E.R.E. reports, no. R2890. (Atomic Energy Research Establishment). * ''The deposition of strontium 89 and strontium 90 on agricultural land and their entry into milk after the reactor accident at Windscale in October'', 1957 . A.H.S.B. (United Kingdom Atomic Energy Authority). * [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1963017/pdf/brmedj03129-0065.pdf "Accident at Windscale" ''British Medical Journal'' 16 Nov 1957;2 (5054) pp. 1166β1168]. ==External links== * [https://vimeo.com/218766324 Video of John Dunster Memorial Lecture at SRP annual conference 2017, by Prof R Wakeford. Includes radiological aspects of Windscale Fire] * {{cite web|url=http://www.nda.gov.uk/sites/sellafield/index.cfm |archive-url=https://web.archive.org/web/20140325204916/http://www.nda.gov.uk/sites/sellafield/index.cfm |archive-date=25 March 2014 |title=Windscale|publisher=Nuclear Decommissioning Authority}} * {{cite web|url=http://www.lakestay.co.uk/1957.htm|title=The 1957 Windscale Fire|publisher=lakestay.co.uk|date=5 July 2009}} * {{cite web|url=http://www.virtualnucleartourist.com/events/windscal.htm|title=Windscale Nuclear Incident|publisher=The Virtual Nuclear Tourist|date=22 December 2005|access-date=14 May 2006|archive-date=4 February 2012|archive-url=https://web.archive.org/web/20120204191130/http://www.virtualnucleartourist.com/events/windscal.htm|url-status=usurped}} * {{cite news|url=http://news.bbc.co.uk/onthisday/hi/dates/stories/november/8/newsid_3181000/3181342.stm|title=1957: Inquiry publishes cause of nuclear fire|publisher=BBC | date=8 November 1957}} * {{cite web|url=http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/29/059/29059916.pdf |title=Evaluation of graphite safety issues for the British production piles at Windscale|author=Marsden, B.J.; Preston, S.D.; Wickham, A.J. ([[AEA Technology|AEA Technology plc]], Warrington (United Kingdom)); Tyson, A. (Process and Radwaste Chemistry Dept., AEA TEchnology plc, Windscale (United Kingdom))|date=8β10 September 1997|publisher=[[International Atomic Energy Agency|IAEA]]}} * {{cite web|url=http://www.suttonelms.org.uk/energy-industry.html|title=Radio Plays - Energy Industry:WINDSCALE....2007|author=Paul Dodgson|publisher=suttonelms.org.uk|date=8β9 October 2007}} {{DEFAULTSORT:Windscale Fire}} [[Category:Nuclear accidents and incidents]] [[Category:Fires in England]] [[Category:1957 disasters in the United Kingdom]] [[Category:1957 in England]] [[Category:20th century in Cumberland]] [[Category:1950s fires in the United Kingdom]] [[Category:1957 fires]] [[Category:Disasters in Cumbria]] [[Category:History of Cumbria]] [[Category:Military nuclear accidents and incidents]] [[Category:1957 in the environment]] [[Category:Environmental disasters in the United Kingdom]] [[Category:October 1957 in the United Kingdom]] [[Category:Nuclear weapons infrastructure of the United Kingdom]] [[Category:INES Level 5 accidents]] [[Category:Civilian nuclear power accidents]] [[Category:Harold Macmillan]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cbignore
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite AV media
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite web
(
edit
)
Template:Convert
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Doi
(
edit
)
Template:Infobox news event
(
edit
)
Template:Main
(
edit
)
Template:Mdash
(
edit
)
Template:More citations needed
(
edit
)
Template:Nbsp
(
edit
)
Template:Ndash
(
edit
)
Template:Portal
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Snd
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Webarchive
(
edit
)