Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Woodall number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number of the form (n * 2^n) - 1}} {{pp-semi-indef|small=yes}} In [[number theory]], a '''Woodall number''' (''W''<sub>''n''</sub>) is any [[natural number]] of the form :<math>W_n = n \cdot 2^n - 1</math> for some natural number ''n''. The first few Woodall numbers are: :1, 7, 23, 63, 159, 383, 895, β¦ {{OEIS|id=A003261}}. ==History== Woodall numbers were first studied by [[Allan J. C. Cunningham]] and [[H. J. Woodall]] in 1917,<ref>{{citation | last1 = Cunningham | first1 = A. J. C | author1-link = Allan Joseph Champneys Cunningham | last2 = Woodall | first2 = H. J. | author2-link = H. J. Woodall | journal = [[Messenger of Mathematics]] | pages = 1β38 | title = Factorisation of <math>Q = (2^q \mp q)</math> and <math>(q \cdot {2^q} \mp 1)</math> | volume = 47 | year = 1917}}.</ref> inspired by [[James Cullen (mathematician)|James Cullen]]'s earlier study of the similarly defined [[Cullen number]]s. ==Woodall primes== {{unsolved|mathematics|Are there infinitely many Woodall primes?}} Woodall numbers that are also [[prime number]]s are called '''Woodall primes'''; the first few exponents ''n'' for which the corresponding Woodall numbers ''W''<sub>''n''</sub> are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... {{OEIS|id=A002234}}; the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... {{OEIS|id=A050918}}. In 1976 [[Christopher Hooley]] showed that [[almost all]] Cullen numbers are [[composite number|composite]].<ref name="EPSW94">{{cite book|last1=Everest|first1=Graham|title=Recurrence sequences|last2=van der Poorten|first2=Alf|last3=Shparlinski|first3=Igor|last4=Ward|first4=Thomas|publisher=[[American Mathematical Society]]|year=2003|isbn=0-8218-3387-1|series=Mathematical Surveys and Monographs|volume=104|location=[[Providence, RI]]|page=94|zbl=1033.11006|author2-link=Alfred van der Poorten}}</ref> In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to [[Prime factorisation|factorise]] other Cullen and Woodall numbers. Included in that paper is a personal communication to Keller from [[Hiromi Suyama]], asserting that Hooley's method can be reformulated to show that it works for any sequence of numbers {{math|''n'' Β· 2<sup>''n'' + ''a''</sup> + ''b''}}, where ''a'' and ''b'' are [[integer]]s, and in particular, that almost all Woodall numbers are composite.<ref>{{Cite journal|last1=Keller|first1=Wilfrid|date=January 1995|title=New Cullen primes|journal=[[Mathematics of Computation]]|volume=64|issue=212|pages=1739|language=en|doi=10.1090/S0025-5718-1995-1308456-3|issn=0025-5718|doi-access=free}} {{Cite web|last1=Keller|first1=Wilfrid|date=December 2013|title=Wilfrid Keller|website=www.fermatsearch.org|location=Hamburg|language=en|url=http://www.fermatsearch.org/history/WKeller.html|access-date=October 1, 2020|url-status=live|archive-url=https://web.archive.org/web/20200228175855/http://www.fermatsearch.org/history/WKeller.html|archive-date=February 28, 2020}}</ref> It is an [[List of unsolved problems in mathematics#Prime numbers|open problem]] whether there are infinitely many Woodall primes. {{As of|2018|10}}, the largest known Woodall prime is 17016602 Γ 2<sup>17016602</sup> β 1.<ref>{{Citation|title=The Prime Database: 8508301*2^17016603-1|url=http://primes.utm.edu/primes/page.php?id=124539|work=Chris Caldwell's The Largest Known Primes Database|access-date=March 24, 2018}}</ref> It has 5,122,515 digits and was found by Diego Bertolotti in March 2018 in the [[distributed computing]] project [[PrimeGrid]].<ref>{{Citation|author=PrimeGrid|author-link=PrimeGrid|title=Announcement of 17016602*2^17016602 - 1|url=http://www.primegrid.com/download/WOO-17016602.pdf|access-date=April 1, 2018}}</ref> ==Restrictions== Starting with ''W''<sub>4</sub> = 63 and ''W''<sub>5</sub> = 159, every sixth Woodall number is [[divisible]] by 3; thus, in order for ''W''<sub>''n''</sub> to be prime, the index ''n'' cannot be [[modular arithmetic|congruent]] to 4 or 5 (modulo 6). Also, for a positive integer ''m'', the Woodall number ''W''<sub>2<sup>''m''</sup></sub> may be prime only if 2<sup>''m''</sup> + ''m'' is prime. As of January 2019, the only known primes that are both Woodall primes and [[Mersenne primes]] are ''W''<sub>2</sub> = ''M''<sub>3</sub> = 7, and ''W''<sub>512</sub> = ''M''<sub>521</sub>. ==Divisibility properties== Like Cullen numbers, Woodall numbers have many divisibility properties. For example, if ''p'' is a prime number, then ''p'' divides :''W''<sub>(''p'' + 1) / 2</sub> if the [[Jacobi symbol]] <math>\left(\frac{2}{p}\right)</math> is +1 and :''W''<sub>(3''p'' β 1) / 2</sub> if the Jacobi symbol <math>\left(\frac{2}{p}\right)</math> is β1.{{Citation needed|date=December 2011}} ==Generalization== A '''generalized Woodall number base ''b''''' is defined to be a number of the form ''n'' Γ ''b''<sup>''n''</sup> β 1, where ''n'' + 2 > ''b''; if a prime can be written in this form, it is then called a '''generalized Woodall prime'''. The smallest value of ''n'' such that ''n'' Γ ''b''<sup>''n''</sup> β 1 is prime for ''b'' = 1, 2, 3, ... are<ref name="tripod">[http://harvey563.tripod.com/GWlist.txt List of generalized Woodall primes base 3 to 10000]</ref> :3, 2, 1, 1, 8, 1, 2, 1, 10, 2, 2, 1, 2, 1, 2, 167, 2, 1, 12, 1, 2, 2, 29028, 1, 2, 3, 10, 2, 26850, 1, 8, 1, 42, 2, 6, 2, 24, 1, 2, 3, 2, 1, 2, 1, 2, 2, 140, 1, 2, 2, 22, 2, 8, 1, 2064, 2, 468, 6, 2, 1, 362, 1, 2, 2, 6, 3, 26, 1, 2, 3, 20, 1, 2, 1, 28, 2, 38, 5, 3024, 1, 2, 81, 858, 1, 2, 3, 2, 8, 60, 1, 2, 2, 10, 5, 2, 7, 182, 1, 17782, 3, ... {{OEIS|id=A240235}} {{As of|2021|11}}, the largest known generalized Woodall prime with base greater than 2 is 2740879 × 32<sup>2740879</sup> β 1.<ref>{{cite web |title=The Top Twenty: Generalized Woodall |url=https://primes.utm.edu/top20/page.php?id=45 |website=primes.utm.edu |access-date=20 November 2021}}</ref> ==See also== * [[Mersenne prime]] - Prime numbers of the form 2<sup>''n''</sup> β 1. ==References== {{Reflist}} ==Further reading== * {{Citation |first=Richard K. |last=Guy |author-link=Richard K. Guy |title=Unsolved Problems in Number Theory |edition=3rd |publisher=[[Springer Verlag]] |location=New York |year=2004 |isbn=0-387-20860-7 |pages=section B20 }}. * {{Citation |first=Wilfrid |last=Keller |title=New Cullen Primes |journal=[[Mathematics of Computation]] |volume=64 |issue=212 |year=1995 |pages=1733β1741 |url=http://www.ams.org/mcom/1995-64-212/S0025-5718-1995-1308456-3/S0025-5718-1995-1308456-3.pdf |doi=10.2307/2153382|jstor=2153382 |doi-access=free }}. * {{Citation |first=Chris |last=Caldwell |url=http://primes.utm.edu/top20/page.php?id=7 |title=The Top Twenty: Woodall Primes |work=The [[Prime Pages]] |access-date=December 29, 2007 }}. ==External links== * Chris Caldwell, [http://primes.utm.edu/glossary/page.php?sort=WoodallNumber The Prime Glossary: Woodall number], and [http://primes.utm.edu/top20/page.php?id=7 The Top Twenty: Woodall], and [http://primes.utm.edu/top20/page.php?id=45 The Top Twenty: Generalized Woodall], at The [[Prime Pages]]. * {{MathWorld|urlname=WoodallNumber|title=Woodall number}} * Steven Harvey, [http://harvey563.tripod.com/GeneralizedWoodallPrimes.txt List of Generalized Woodall primes]. * Paul Leyland, [https://web.archive.org/web/20120204131629/http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm Generalized Cullen and Woodall Numbers] {{Prime number classes|state=collapsed}} {{Classes of natural numbers}} {{DEFAULTSORT:Woodall Number}} [[Category:Integer sequences]] [[Category:Unsolved problems in number theory]] [[Category:Classes of prime numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:As of
(
edit
)
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:OEIS
(
edit
)
Template:Pp-semi-indef
(
edit
)
Template:Prime number classes
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Unsolved
(
edit
)