Template:Short description Template:Sky {{#invoke:Infobox|infobox}}Template:Template other{{#invoke:Check for unknown parameters|check|unknown=Template:Main other|preview=Page using Template:Infobox galaxy with unknown parameter "_VALUE_"| ignoreblank=y | name | image | image_scale | caption | alt | epoch | pronounce | constellation name | ra | dec | z | h_radial_v | gal_v | dist_pc | dist_ly | group_cluster | type | mass | mass_light_ratio | size | stars | appmag_v | appmag_b | absmag_v | absmag_b | mag_j | mag_h | mag_k| size_v | sbrightness | half_light_radius_pc | half_light_radius_arcminsec | h1_scale_length_pc | h1_scale_length_arcminsec | xray_radius_pc | xray_radius_arcminsec | notes | names | references }}
The Triangulum Galaxy is a spiral galaxy 2.73 million light-years (ly) from Earth in the constellation Triangulum. It is catalogued as Messier 33 or NGC 598. With the D25 isophotal diameter of Template:Convert, the Triangulum Galaxy is the third-largest member of the Local Group of galaxies, behind the Andromeda Galaxy and the Milky Way.
The galaxy is the second-smallest spiral galaxy in the Local Group after the Large Magellanic Cloud, which is a Magellanic-type spiral galaxy.<ref name="rydenpeterson">Template:Cite book</ref> It is believed to be a satellite of the Andromeda Galaxy or on its rebound into the latter due to their interactions, velocities,<ref name="science307_5714" /> and proximity to one another in the night sky. It also has an H II nucleus.<ref name="hoetal1997">Template:Cite journal</ref>
EtymologyEdit
The galaxy gets its name from the constellation Triangulum, where it can be spotted.
It is sometimes informally referred to as the "Pinwheel Galaxy" by some astronomy references,<ref name=omeara1998/> in some computerized telescope software, and in some public outreach websites.<ref name="spaceref.com"/> However, the SIMBAD Astronomical Database, a professional database, collates formal designations for astronomical objects and indicates that Pinwheel Galaxy refers to Messier 101,<ref name=simbadm101/> which several amateur astronomy resources including public outreach websites identify by that name, and that is within the bounds of Ursa Major.<ref name="hubble/esa"/>
VisibilityEdit
Under exceptionally good viewing conditions with no light pollution, the Triangulum Galaxy can be seen by some people with the fully dark-adapted naked eye;<ref name=bort/> to those viewers, it is the farthest permanent entity visible without magnification, being about half again as distant as Messier 31, the Andromeda Galaxy.<ref name=naeye08/><ref name=skiff97/> It is a diffuse, or extended, object rather than a starlike point, even without magnification, because of its physical extent.
Its observability without optical aid ranges from being relatively easily seen by people using direct vision in deep rural locations under a dark, clear, transparent sky, to requiring use of averted vision by observers in locations beyond the suburbs in shallow rural areas under good viewing conditions.<ref name=bort/> It is one of the reference objects of the Bortle Dark-Sky Scale.
Crumey has shown that although the total apparent V-magnitude of M33 is 5.72, it has an effective visual magnitude of approximately 6.6, meaning that a precondition for visibility is that the observer can see stars at least as faint as that latter figure.<ref>Template:Cite journal</ref> This is fainter than many people are able to see, even at a very dark site.<ref>Template:Cite journal</ref>
Observation historyEdit
The Triangulum Galaxy was probably discovered by the Italian astronomer Giovanni Battista Hodierna before 1654. In his work De systemate orbis cometici; deque admirandis coeli caracteribus ("About the systematics of the cometary orbit, and about the admirable objects of the sky"), he listed it as a cloud-like nebulosity or obscuration and gave the cryptic description, "near the Triangle hinc inde". This is in reference to the constellation Triangulum as a pair of triangles. The magnitude of the object matches M33, so it is most likely a reference to the Triangulum Galaxy.<ref name=jha16_1/>
The galaxy was independently discovered by Charles Messier on the night of August 25–26, 1764. It was published in his Catalog of Nebulae and Star Clusters (1771) as object number 33; hence the name M33.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> When William Herschel compiled his extensive catalog of nebulae, he was careful not to include most of the objects identified by Messier.<ref name=jones91/> However, M33 was an exception, and he cataloged this object on September 11, 1784, as H V-17.<ref name=mullaney07/>
Herschel also cataloged the Triangulum Galaxy's brightest and largest H II region (diffuse emission nebula containing ionized hydrogen) as H III.150 separately from the galaxy itself; the nebula eventually obtained NGC number 604. As seen from Earth, NGC 604 is located northeast of the galaxy's central core. It is one of the largest H II regions known, with a diameter of nearly 1500 light-years and a spectrum similar to that of the Orion Nebula. Herschel also noted three other smaller H II regions (NGC 588, 592, and 595).
It was among the first "spiral nebulae" identified as such by Lord Rosse in 1850. In 1922–23, John Charles Duncan and Max Wolf discovered variable stars in the nebulae. Edwin Hubble showed in 1926 that 35 of these stars were classical Cepheids, thereby allowing him to estimate their distances. The results were consistent with the concept of spiral nebulae being independent galactic systems of gas and dust, rather than just nebulae in the Milky Way.<ref name=bergh2000/>
- Nursery of New Stars - GPN-2000-000972.jpg
NGC 604 in the Triangulum Galaxy
- Messier33 - HST - Heic1901a.jpg
CitationClass=web }}</ref>
PropertiesEdit
The Triangulum Galaxy is the third largest member of the Local Group of galaxies. It has a diameter measured through the D25 standard - the isophote where the surface brightness of the galaxy reaches 25 mag/arcsec2, to be about Template:Convert,<ref name="RC3" /> making it roughly 70% the size of the Milky Way. It may be a gravitationally bound companion of the Andromeda Galaxy. Triangulum may be home to 40 billion stars, compared to 400 billion for the Milky Way and 1 trillion for Andromeda.<ref name=michon/>
The disk of Triangulum has an estimated mass of Template:Nowrap solar masses, while the gas component is about Template:Nowrap solar masses. Thus, the combined mass of all baryonic matter in the galaxy may be 1010 solar masses. The contribution of the dark matter component out to a radius of Template:Convert is equivalent to about Template:Nowrap solar masses.<ref name=mnras342_1/>
Location – distance – motionEdit
Estimates of the distance from the Milky Way to the Triangulum Galaxy range from Template:Convert (or 2.38 to 3.07 Mly), with most estimates since the year 2000 lying in the middle portion of this range,<ref name=aass06/><ref name=apj696/> making it slightly more distant than the Andromeda Galaxy (at 2,540,000 light-years). At least three techniques have been used to measure distances to M 33. Using the Cepheid variable method, an estimate of Template:Convert was achieved in 2004.<ref name=aj127/><ref name=ap49/> In the same year, the tip of the red-giant branch (TRGB) method was used to derive a distance estimate of Template:Convert.<ref name=mnras350/> The Triangulum Galaxy is around 750,000 light years from the Andromeda Galaxy.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
In 2006, a group of astronomers announced the discovery of an eclipsing binary star in the Triangulum Galaxy. By studying the eclipses of the stars, astronomers were able to measure their sizes. Knowing the sizes and temperatures of the stars, they were able to measure the absolute magnitude of the stars. When the visual and absolute magnitudes are known, the distance to the star can be measured. The stars lie at the distance of Template:Convert.<ref name=aass06/> The average of 102 distance estimates published since 1987 gives a distance modulus of 24.69, or .883 Mpc (2,878,000 light-years).<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
The Triangulum Galaxy is a source of H2O maser emission.<ref name=apj708/> In 2005, using observations of two water masers on opposite sides of Triangulum via the VLBA, researchers were for the first time able to estimate the angular rotation and proper motion of Triangulum. A velocity of Template:Nowrap relative to the Milky Way was computed, which means Triangulum is moving towards Andromeda Galaxy and suggesting it may be a satellite of the larger galaxy (depending on their relative distances and margins of error).<ref name=science307_5714/>
In 2004, evidence was announced of a clumpy stream of hydrogen gas linking the Andromeda Galaxy with Triangulum, suggesting that the two may have tidally interacted in the past. This discovery was confirmed in 2011.<ref name=nra020120613/> A distance of less than 300 kiloparsecs between the two supports this hypothesis.<ref name="pawlowski">Template:Cite journal</ref>
The Pisces Dwarf (LGS 3), one of the small Local Group member galaxies, is located Template:Convert from the Sun. It is 20° from the Andromeda Galaxy and 11° from Triangulum. As LGS 3 lies at a distance of Template:Convert from both galaxies, it could be a satellite galaxy of either Andromeda or Triangulum. LGS 3 has a core radius of Template:Convert and Template:Nowrap solar masses.<ref name=apj562_2/>
Pisces VII/Triangulum (Tri) III may be another satellite of Triangulum.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
StructureEdit
In the French astronomer Gérard de Vaucouleurs' revised Hubble Sandage (VRHS) system of galaxy morphological classification, the Triangulum Galaxy is classified as type SA(s)cd. The S prefix indicates that it is a disk-shaped galaxy with prominent arms of gas and dust that spiral out from the nucleus—what is commonly known as a spiral galaxy. The A is assigned when the galactic nucleus lacks a bar-shaped structure, in contrast to SB class barred spiral galaxies. American astronomer Allan Sandage's "(s)" notation is used when the spiral arms emerge directly from the nucleus or central bar, rather than from an inner ring as with an (r)-type galaxy. Finally, the cd suffix represents a stage along the spiral sequence that describes the openness of the arms. A rating of cd indicates relatively loosely wound arms.<ref name=buta_corwin_odewahn07/>
This galaxy has an inclination of 54° to the line of sight from Earth, allowing the structure to be examined without significant obstruction by gas and dust.<ref name=apj602/><ref name=aaa493/> The disk of the Triangulum Galaxy appears warped out to a radius of about 8 kpc. There may be a halo surrounding the galaxy, but there is no bulge at the nucleus.<ref name=aaa506/> This is an isolated galaxy and there are no indications of recent mergers or interactions with other galaxies,<ref name=aaa493/> and it lacks the dwarf spheroidals or tidal tails associated with the Milky Way.<ref name=aa58/>
Triangulum is classified as unbarred, but an analysis of the galaxy's shape shows what may be a weak bar-like structure about the galactic nucleus. The radial extent of this structure is about 0.8 kpc.<ref name=hernandez_lopez_et_al_09/>
The nucleus of this galaxy is an H II region,<ref name=apj708/> and it contains an ultraluminous X-ray source with an emission of Template:Nowrap, which is the most luminous source of X-rays in the Local Group of galaxies. This source is modulated by 20% over a 106-day cycle.<ref name=aaa425/> However, the nucleus does not appear to contain a supermassive black hole, as a best-fit value of zero mass and an upper limit of Template:Solar mass is placed on the mass of a central black hole based on models and the Hubble Space Telescope (HST) data.<ref name=science122_5/> This is significantly lower than the mass expected from the velocity dispersion of the nucleus and far below any mass predicted from the disk kinematics.<ref name=science122_5/> This may suggest that supermassive black holes are associated only with galaxy bulges instead of with their disks.<ref name=science122_5/> Assuming that the upper limit of the central black hole is correct, it would be rather an intermediate-mass black hole.
The inner part of the galaxy has two luminous spiral arms, along with multiple spurs that connect the inner to the outer spiral features.<ref name=apj602/><ref name=aaa493/> The main arms are designated IN (north) and IS (south).<ref name=aaa205_1_2/>
Star formationEdit
In the central 4′ region of this galaxy, atomic gas is being efficiently converted to molecular gas, resulting in a strong spectral emission of CO. This effect occurs as giant molecular clouds condense out of the surrounding interstellar medium. A similar process is taking place outside the central 4′, but at a less efficient pace. About 10% of the gas content in this galaxy is in the molecular form.<ref name=apj602/><ref name=aaa493/>
Star formation is taking place at a rate that is strongly correlated with local gas density, and the rate per unit area is higher than in the neighboring Andromeda Galaxy. (The rate of star formation is about 3.4 solar masses Gyr−1 pc−2 in the Triangulum Galaxy, compared to 0.74 in Andromeda.<ref name="aaa495"/>) The total integrated rate of star formation in the Triangulum Galaxy is about Template:Nowrap. It is uncertain whether this net rate is currently decreasing or remaining constant.<ref name=apj602/><ref name=aaa493/>
Based on analysis of the chemical composition of this galaxy, it appears to be divided into two distinct components with differing histories. The inner disk within a radius of Template:Convert has a typical composition gradient that decreases linearly from the core. Beyond this radius, out to about Template:Convert, the gradient is much flatter. This suggests a different star formation history between the inner disk and the outer disk and halo, and may be explained by a scenario of "inside-out" galaxy formation.<ref name=aaa506/> This occurs when gas is accumulated at large radii later in a galaxy's life space, while the gas at the core becomes exhausted. The result is a decrease in the average age of stars with increasing radius from the galaxy core.<ref name=apjl695/>
Discrete featuresEdit
Using infrared observations from the Spitzer Space Telescope, a total of 515 discrete candidate sources of 24 μm emission within the Triangulum Galaxy have been catalogued as of 2007. The brightest sources lie within the central region of the galaxy and along the spiral arms.
Many of the emission sources are associated with H II regions of star formation.<ref name=aaa476/> The four brightest HII regions are designated NGC 588, NGC 592, NGC 595, and NGC 604. These regions are associated with molecular clouds containing Template:Nowrap solar masses. The brightest of these regions, NGC 604, may have undergone a discrete outburst of star formation about three million years ago.<ref name=apj128_1/> This nebula is the second most luminous HII region within the Local Group of galaxies, at Template:Nowrap times the luminosity of the Sun.<ref name=aaa495/> Other prominent HII regions in Triangulum include IC 132, IC 133, and IK 53.<ref name=aaa205_1_2/>
The northern main spiral arm contains four large HII regions, while the southern arm has greater concentrations of young, hot stars.<ref name=aaa205_1_2/> The estimated rate of supernova explosions in the Triangulum Galaxy is 0.06 Type Ia and 0.62 Type Ib/Type II per century. This is equivalent to a supernova explosion every 147 years, on average.<ref name=apjss92_2/> As of 2008, a total of 100 supernova remnants have been identified in the Triangulum Galaxy,<ref name=apjss174_2/> the majority of which lie in the southern half of the spiral galaxy. Similar asymmetries exist for H I and H II regions, plus highly luminous concentrations of massive, O type stars. The center of the distribution of these features is offset about two arc minutes to the southwest.<ref name=aaa205_1_2/> M33 being a local galaxy, the Central Bureau for Astronomical Telegrams (CBAT) tracks novae in it along with M31 and M81.<ref name="supernovae.net"> {{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
About 54 globular clusters have been identified in this galaxy, but the actual number may be 122 or more.<ref name=aa58/> The confirmed clusters may be several billion years younger than globular clusters in the Milky Way, and cluster formation appears to have increased during the past 100 million years. This increase is correlated with an inflow of gas into the center of the galaxy. The ultraviolet emission of massive stars in this galaxy matches the level of similar stars in the Large Magellanic Cloud.<ref name=grebel99/>
In 2007, a black hole about 15.7 times the mass of the Sun was detected in this galaxy using data from the Chandra X-ray Observatory. The black hole, named M33 X-7, orbits a companion star which it eclipses every 3.5 days. It is the largest stellar mass black hole known.<ref name=ar53_3/><ref name=morcone07/>
Unlike the Milky Way and Andromeda galaxies, the Triangulum Galaxy does not appear to have a supermassive black hole at its center.<ref name=science293_5532/> This may be because the mass of a galaxy's central supermassive black hole correlates with the size of the galaxy's central bulge, and unlike the Milky Way and Andromeda, the Triangulum Galaxy is a pure disk galaxy with no bulge.<ref name="science122_5">Template:Cite journal</ref>
Relationship with the Andromeda GalaxyEdit
As mentioned above, M33 is linked to M31 by several streams of neutral hydrogen<ref name=triangulumvsandromeda>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> and stars,<ref name=triangulumvsandromeda/> which suggests that a past interaction between these two galaxies took place from 2 to 8 billion years ago,<ref name="Davidge & McCoonnachie 2012"> Template:Cite journal</ref><ref name=Bekki2008>Template:Cite journal</ref> and a more violent encounter will occur 2.5 billion years in the future.<ref name=triangulumvsandromeda/>
The fate of M33 was uncertain in 2009 beyond seeming to be linked to its larger neighbor M31. Suggested scenarios include being torn apart and absorbed by the greater companion, fueling the latter with hydrogen to form new stars; eventually exhausting all of its gas, and thus the ability to form new stars;<ref name=Putman2009>Template:Cite journal</ref> or participating in the collision between the Milky Way and M31, likely ending up orbiting the merger product and fusing with it much later. Two other possibilities are a collision with the Milky Way before the Andromeda Galaxy arrives or an ejection out of the Local Group.<ref name=Roeland2012>Template:Cite journal</ref> Astrometric data from Gaia appears in 2019 to rule out the possibility that M33 and M31 are in orbit. If correct, M33 is on its first infall proper into the Andromeda Galaxy (M31).<ref>Template:Cite journal</ref>
See alsoEdit
- List of galaxies
- Messier object
- List of Messier objects
- New General Catalogue
- NGC 55
- Pisces Dwarf
- Andromeda-Milky Way collision
ReferencesEdit
Further readingEdit
External linksEdit
- Template:WikiSky
- Messier 33, SEDS Messier pages
- M33 at ESA/Hubble
- Triangulum Galaxy High In Northern Skies
- Dark Atmospheres Photography – M33 (dust lane enhancement)
- Pointing to the Universe – M33
- {{#invoke:citation/CS1|citation
|CitationClass=web }}
- NASA/IPAC Extragalactic Database entry for Messier 33
- Triangulum Galaxy (M33) on Constellation Guide
- Triangulum Galaxy – Zoomable UltraHighRez (Hubble; 11 January 2019)
Template:Triangulum Galaxy Template:Messier objects Template:Stars of Triangulum Template:NGC10 Template:Authority control Template:Portal bar