Chern–Simons form

Revision as of 20:14, 30 December 2023 by imported>QuarksAndElectrons (Removed WP:SPAM by Krouglov (talk))
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description In mathematics, the Chern–Simons forms are certain secondary characteristic classes.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.<ref>Template:Cite book</ref>

DefinitionEdit

Given a manifold and a Lie algebra valued 1-form <math>\mathbf{A}</math> over it, we can define a family of p-forms:<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

In one dimension, the Chern–Simons 1-form is given by

<math>\operatorname{Tr} [ \mathbf{A} ].</math>

In three dimensions, the Chern–Simons 3-form is given by

<math>\operatorname{Tr} \left[ \mathbf{F} \wedge \mathbf{A}-\frac{1}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \right] = \operatorname{Tr} \left[ d\mathbf{A} \wedge \mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\right].</math>

In five dimensions, the Chern–Simons 5-form is given by

<math>

\begin{align} & \operatorname{Tr} \left[ \mathbf{F}\wedge\mathbf{F} \wedge \mathbf{A}-\frac{1}{2} \mathbf{F} \wedge\mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} +\frac{1}{10} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge\mathbf{A} \right] \\[6pt] = {} & \operatorname{Tr} \left[ d\mathbf{A}\wedge d\mathbf{A} \wedge \mathbf{A} + \frac{3}{2} d\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} +\frac{3}{5} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} \right] \end{align} </math>

where the curvature F is defined as

<math>\mathbf{F} = d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}.</math>

The general Chern–Simons form <math>\omega_{2k-1}</math> is defined in such a way that

<math>d\omega_{2k-1}= \operatorname{Tr}(F^k),</math>

where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection <math>\mathbf{A}</math>.

In general, the Chern–Simons p-form is defined for any odd p.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Application to physicsEdit

In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons forms.<ref>Template:Cite journal</ref>

In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.

See alsoEdit

ReferencesEdit

Template:Reflist

Further readingEdit

Template:String theory topics