Functional derivative

Revision as of 18:57, 11 February 2025 by imported>BobH4 (→‎von Weizsäcker kinetic energy functional)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative)<ref name="GiaquintaHildebrandtP18">Template:Harvp</ref> relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends.

In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integrand Template:Math of a functional, if a function Template:Math is varied by adding to it another function Template:Math that is arbitrarily small, and the resulting integrand is expanded in powers of Template:Math, the coefficient of Template:Math in the first order term is called the functional derivative.

For example, consider the functional <math display="block"> J[f] = \int_a^b L( \, x, f(x), f'{(x)} \, ) \, dx \, , </math> where Template:Math. If Template:Math is varied by adding to it a function Template:Math, and the resulting integrand Template:Math is expanded in powers of Template:Math, then the change in the value of Template:Math to first order in Template:Math can be expressed as follows:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to Template:Harvp, this notation is customary in physical literature.</ref> <math display="block">\begin{align} \delta J &= \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, \\[1ex] &= \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \end{align} </math> where the variation in the derivative, Template:Math was rewritten as the derivative of the variation Template:Math, and integration by parts was used in these derivatives.

DefinitionEdit

In this section, the functional differential (or variation or first variation)<Ref Group = 'Note'> Called first variation in Template:Harv, variation or first variation in Template:Harv, variation or differential in Template:Harv and differential in Template:Harv.</ref> is defined. Then the functional derivative is defined in terms of the functional differential.

Functional differentialEdit

Suppose <math>B</math> is a Banach space and <math>F</math> is a functional defined on <math>B</math>. The differential of <math>F</math> at a point <math>\rho\in B</math> is the linear functional <math>\delta F[\rho,\cdot]</math> on <math>B</math> defined<ref name="GelfandFominp11">Template:Harvp.</ref> by the condition that, for all <math>\phi\in B</math>, <math display="block"> F[\rho+\phi] - F[\rho] = \delta F [\rho; \phi] + \varepsilon \left\|\phi\right\| </math> where <math>\varepsilon</math> is a real number that depends on <math>\|\phi\|</math> in such a way that <math>\varepsilon\to 0</math> as <math>\|\phi\|\to 0</math>. This means that <math>\delta F[\rho,\cdot]</math> is the Fréchet derivative of <math>F</math> at <math>\rho</math>.

However, this notion of functional differential is so strong it may not exist,<ref name="GiaquintaHildebrandtP180">Template:Harvp.</ref> and in those cases a weaker notion, like the Gateaux derivative is preferred. In many practical cases, the functional differential is defined<ref name="GiaquintaHildebrandtP3">Template:Harvp.</ref> as the directional derivative <math display="block"> \begin{align} \delta F[\rho,\phi] &= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\[1ex] &= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}. \end{align} </math> Note that this notion of the functional differential can even be defined without a norm.

Functional derivativeEdit

In many applications, the domain of the functional <math>F</math> is a space of differentiable functions <math>\rho</math> defined on some space <math>\Omega</math> and <math>F</math> is of the form <math display="block"> F[\rho] = \int_\Omega L(x,\rho(x),D\rho(x))\,dx </math> for some function <math>L(x,\rho(x),D\rho(x))</math> that may depend on <math>x</math>, the value <math>\rho(x)</math> and the derivative <math>D\rho(x)</math>. If this is the case and, moreover, <math>\delta F[\rho,\phi]</math> can be written as the integral of <math>\phi</math> times another function (denoted Template:Math) <math display="block">\delta F [\rho, \phi] = \int_\Omega \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx</math> then this function Template:Math is called the functional derivative of Template:Math at Template:Math.<ref name=ParrYangP246A.2>Template:Harvp.</ref><ref name=GreinerReinhardtP36.2>Template:Harvp.</ref> If <math>F</math> is restricted to only certain functions <math>\rho</math> (for example, if there are some boundary conditions imposed) then <math>\phi</math> is restricted to functions such that <math>\rho+\varepsilon\phi</math> continues to satisfy these conditions.

Heuristically, <math>\phi</math> is the change in <math>\rho</math>, so we 'formally' have <math>\phi = \delta\rho</math>, and then this is similar in form to the total differential of a function <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>, <math display="block"> dF = \sum_{i=1} ^n \frac {\partial F} {\partial \rho_i} \ d\rho_i ,</math> where <math>\rho_1,\rho_2,\dots,\rho_n</math> are independent variables. Comparing the last two equations, the functional derivative <math>\delta F/\delta\rho(x)</math> has a role similar to that of the partial derivative <math>\partial F/\partial\rho_i</math>, where the variable of integration <math>x</math> is like a continuous version of the summation index <math>i</math>.<ref name=ParrYangP246>Template:Harvp.</ref> One thinks of Template:Math as the gradient of Template:Math at the point Template:Math, so the value Template:Math measures how much the functional Template:Math will change if the function Template:Math is changed at the point Template:Math. Hence the formula <math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math> is regarded as the directional derivative at point <math>\rho</math> in the direction of <math>\phi</math>. This is analogous to vector calculus, where the inner product of a vector <math>v</math> with the gradient gives the directional derivative in the direction of <math>v</math>.

PropertiesEdit

Like the derivative of a function, the functional derivative satisfies the following properties, where Template:Math and Template:Math are functionals:<ref group="Note"> Here the notation <math display="block">\frac{\delta{F}}{\delta\rho}(x) \equiv \frac{\delta{F}}{\delta\rho(x)}</math> is introduced. </ref>

  • Linearity:<ref name=ParrYangP247A.3>Template:Harvp.</ref> <math display="block">\frac{\delta(\lambda F + \mu G)[\rho ]}{\delta \rho(x)} = \lambda \frac{\delta F[\rho]}{\delta \rho(x)} + \mu \frac{\delta G[\rho]}{\delta \rho(x)},</math> where Template:Math are constants.
  • Product rule:<ref name=ParrYangP247A.4>Template:Harvp.</ref> <math display="block">\frac{\delta(FG)[\rho]}{\delta \rho(x)} = \frac{\delta F[\rho]}{\delta \rho(x)} G[\rho] + F[\rho] \frac{\delta G[\rho]}{\delta \rho(x)} \, , </math>
  • Chain rules:
    • If Template:Math is a functional and Template:Math another functional, then<ref>Template:Harvp.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math>
    • If Template:Math is an ordinary differentiable function (local functional) Template:Math, then this reduces to<ref>Template:Harvp.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math>

Determining functional derivativesEdit

A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the Euler–Lagrange equation: indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the principle of least action in Lagrangian mechanics (18th century). The first three examples below are taken from density functional theory (20th century), the fourth from statistical mechanics (19th century).

FormulaEdit

Given a functional <math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math> and a function <math>\phi(\boldsymbol{r})</math> that vanishes on the boundary of the region of integration, from a previous section Definition, <math display="block">\begin{align} \int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} & = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ & = \int \left( \frac{\partial f}{\partial\rho} \, \phi + \frac{\partial f}{\partial\nabla\rho} \cdot \nabla\phi \right) d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi + \nabla \cdot \left( \frac{\partial f}{\partial\nabla\rho} \, \phi \right) - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . \end{align}</math>

The second line is obtained using the total derivative, where Template:Math is a derivative of a scalar with respect to a vector.<ref group="Note">For a three-dimensional Cartesian coordinate system, <math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref>

The third line was obtained by use of a product rule for divergence. The fourth line was obtained using the divergence theorem and the condition that <math>\phi=0</math> on the boundary of the region of integration. Since <math>\phi</math> is also an arbitrary function, applying the fundamental lemma of calculus of variations to the last line, the functional derivative is <math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math>

where Template:Math and Template:Math. This formula is for the case of the functional form given by Template:Math at the beginning of this section. For other functional forms, the definition of the functional derivative can be used as the starting point for its determination. (See the example Coulomb potential energy functional.)

The above equation for the functional derivative can be generalized to the case that includes higher dimensions and higher order derivatives. The functional would be, <math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math>

where the vector Template:Math, and Template:Math is a tensor whose Template:Math components are partial derivative operators of order Template:Math, <math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \dots, \alpha_i = 1, 2, \dots , n \ . </math><ref group="Note">For example, for the case of three dimensions (Template:Math) and second order derivatives (Template:Math), the tensor Template:Math has components, <math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} </math>where <math>\alpha</math> and <math>\beta</math> can be <math>1,2,3</math>.</ref>

An analogous application of the definition of the functional derivative yields <math display="block">\begin{align} \frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ &{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . \end{align}</math>

In the last two equations, the Template:Math components of the tensor <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> are partial derivatives of Template:Math with respect to partial derivatives of ρ, <math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } </math> where <math> \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\,i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } </math>, and the tensor scalar product is, <math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math> <ref group="Note">For example, for the case Template:Math and Template:Math, the tensor scalar product is, <math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \, \frac {\partial f} {\partial \rho_{\alpha \beta} } , </math>where <math>\rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} }</math>.</ref>

ExamplesEdit

Thomas–Fermi kinetic energy functionalEdit

The Thomas–Fermi model of 1927 used a kinetic energy functional for a noninteracting uniform electron gas in a first attempt of density-functional theory of electronic structure: <math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math> Since the integrand of Template:Math does not involve derivatives of Template:Math, the functional derivative of Template:Math is,<ref name=ParrYangP247A.6>Template:Harvp.</ref> <math display="block">\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, .</math>

Coulomb potential energy functionalEdit

The electron-nucleus potential energy is <math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math>

Applying the definition of functional derivative, <math display="block">\begin{align} \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\[1ex] & {} = \int \frac {\phi(\boldsymbol{r})} {|\boldsymbol{r}|} \ d\boldsymbol{r} \, . \end{align}</math> So, <math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math>

The functional derivative of the classical part of the electron-electron interaction (often called Hartree energy) is <math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> From the definition of the functional derivative, <math display="block">\begin{align} \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} & {} = \left [ \frac {d \ }{d\varepsilon} \, J[\rho + \varepsilon\phi] \right ]_{\varepsilon = 0} \\ & {} = \left [ \frac {d \ }{d\varepsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \varepsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\varepsilon = 0} \\ & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ \end{align}</math> The first and second terms on the right hand side of the last equation are equal, since Template:Math and Template:Math in the second term can be interchanged without changing the value of the integral. Therefore, <math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> and the functional derivative of the electron-electron Coulomb potential energy functional Template:Math[ρ] is,<ref name=ParrYangP248A.11>Template:Harvp.</ref> <math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math>

The second functional derivative is <math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math>

von Weizsäcker kinetic energy functionalEdit

In 1935 von Weizsäcker proposed to add a gradient correction to the Thomas-Fermi kinetic energy functional to make it better suit a molecular electron cloud: <math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W}(\mathbf{r}) \ d\mathbf{r} \, ,</math> where <math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math> Using a previously derived formula for the functional derivative, <math display="block">\begin{align} \frac{\delta T_\mathrm{W}}{\delta \rho} & = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ & = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , \end{align}</math> and the result is,<ref name=ParrYangP247A.9>Template:Harvp.</ref> <math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math>

EntropyEdit

The entropy of a discrete random variable is a functional of the probability mass function.

<math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math> Thus, <math display="block">\begin{align} \sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) & {} = \left[ \frac{d}{d\varepsilon} H[p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0}\\ & {} = \left [- \, \frac{d}{d\varepsilon} \sum_x \, [p(x) + \varepsilon\phi(x)] \ \log [p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0} \\ & {} = -\sum_x \, [1+\log p(x)] \ \phi(x) \, . \end{align}</math> Thus, <math display="block">\frac{\delta H}{\delta p(x)} = -1-\log p(x).</math>

ExponentialEdit

Let <math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math>

Using the delta function as a test function, <math display="block">\begin{align} \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} & {} = \lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}\\ & {} = \lim_{\varepsilon\to 0}\frac{e^{\int (\varphi(x)+\varepsilon\delta(x-y)) g(x)dx}-e^{\int \varphi(x) g(x)dx}}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon \int \delta(x-y) g(x)dx}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon g(y)}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}g(y). \end{align}</math>

Thus, <math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math>

This is particularly useful in calculating the correlation functions from the partition function in quantum field theory.

Functional derivative of a functionEdit

A function can be written in the form of an integral like a functional. For example, <math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math> Since the integrand does not depend on derivatives of ρ, the functional derivative of ρTemplate:Math is, <math display="block">\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')} = \frac{\partial \ \ }{\partial \rho(\boldsymbol{r}')} \, [\rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')] = \delta(\boldsymbol{r}-\boldsymbol{r}').</math>

Functional derivative of iterated functionEdit

The functional derivative of the iterated function <math>f(f(x))</math> is given by: <math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> and <math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math>

In general: <math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math>

Putting in Template:Math gives: <math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math>

Using the delta function as a test functionEdit

In physics, it is common to use the Dirac delta function <math>\delta(x-y)</math> in place of a generic test function <math>\phi(x)</math>, for yielding the functional derivative at the point <math>y</math> (this is a point of the whole functional derivative as a partial derivative is a component of the gradient):<ref>Template:Harvp</ref> <math display="block">\frac{\delta F[\rho(x)]}{\delta \rho(y)}=\lim_{\varepsilon\to 0}\frac{F[\rho(x)+\varepsilon\delta(x-y)]-F[\rho(x)]}{\varepsilon}.</math>

This works in cases when <math>F[\rho(x)+\varepsilon f(x)]</math> formally can be expanded as a series (or at least up to first order) in <math>\varepsilon</math>. The formula is however not mathematically rigorous, since <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> is usually not even defined.

The definition given in a previous section is based on a relationship that holds for all test functions <math>\phi(x)</math>, so one might think that it should hold also when <math>\phi(x)</math> is chosen to be a specific function such as the delta function. However, the latter is not a valid test function (it is not even a proper function).

In the definition, the functional derivative describes how the functional <math>F[\rho(x)]</math> changes as a result of a small change in the entire function <math>\rho(x)</math>. The particular form of the change in <math>\rho(x)</math> is not specified, but it should stretch over the whole interval on which <math>x</math> is defined. Employing the particular form of the perturbation given by the delta function has the meaning that <math>\rho(x)</math> is varied only in the point <math>y</math>. Except for this point, there is no variation in <math>\rho(x)</math>.

NotesEdit

Template:Reflist

FootnotesEdit

Template:Reflist

ReferencesEdit

External linksEdit

Template:Functional analysis Template:Analysis in topological vector spaces