Template:Short description Template:Infobox integer sequence In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number.
The first few semiperfect numbers are: 6, 12, 18, 20, 24, 28, 30, 36, 40, ... (sequence A005835 in the OEIS)
PropertiesEdit
- Every multiple of a semiperfect number is semiperfect.Template:Sfnp A semiperfect number that is not divisible by any smaller semiperfect number is called primitive.
- Every number of the form 2mp for a natural number m and an odd prime number p such that p < 2m+1 is also semiperfect.
- In particular, every number of the form 2m(2m+1 − 1) is semiperfect, and indeed perfect if 2m+1 − 1 is a Mersenne prime.
- The smallest odd semiperfect number is 945.Template:Sfnp
- A semiperfect number is necessarily either perfect or abundant. An abundant number that is not semiperfect is called a weird number.
- With the exception of 2, all primary pseudoperfect numbers are semiperfect.
- Every practical number that is not a power of two is semiperfect.
- The natural density of the set of semiperfect numbers exists.Template:Sfnp
Primitive semiperfect numbersEdit
A primitive semiperfect number (also called a primitive pseudoperfect number, irreducible semiperfect number or irreducible pseudoperfect number) is a semiperfect number that has no semiperfect proper divisor.Template:Sfnp
The first few primitive semiperfect numbers are 6, 20, 28, 88, 104, 272, 304, 350, ... (sequence A006036 in the OEIS)
There are infinitely many such numbers. All numbers of the form 2mp, with p a prime between 2m and 2m+1, are primitive semiperfect, but this is not the only form: for example, 770.Template:SfnpTemplate:Sfnp There are infinitely many odd primitive semiperfect numbers, the smallest being 945, a result of Paul Erdős.Template:Sfnp There are also infinitely many primitive semiperfect numbers that are not harmonic divisor numbers.Template:Sfnp
Every semiperfect number is a multiple of a primitive semiperfect number.
See alsoEdit
NotesEdit
ReferencesEdit
External linksEdit
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:PseudoperfectNumber%7CPseudoperfectNumber.html}} |title = Pseudoperfect Number |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:PrimitivePseudoperfectNumber%7CPrimitivePseudoperfectNumber.html}} |title = Primitive Pseudoperfect Number |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}
Template:Divisor classes Template:Classes of natural numbers