In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions.
ApproachEdit
First consider the following property of the Laplace transform:
- <math>\mathcal{L}\{f'\}=s\mathcal{L}\{f\}-f(0)</math>
- <math>\mathcal{L}\{f\}=s^2\mathcal{L}\{f\}-sf(0)-f'(0)</math>
One can prove by induction that
- <math>\mathcal{L}\{f^{(n)}\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)</math>
Now we consider the following differential equation:
- <math>\sum_{i=0}^{n}a_if^{(i)}(t)=\phi(t)</math>
with given initial conditions
- <math>f^{(i)}(0)=c_i</math>
Using the linearity of the Laplace transform it is equivalent to rewrite the equation as
- <math>\sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}</math>
obtaining
- <math>\mathcal{L}\{f(t)\}\sum_{i=0}^{n}a_is^i-\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}f^{(j-1)}(0)=\mathcal{L}\{\phi(t)\}</math>
Solving the equation for <math> \mathcal{L}\{f(t)\}</math> and substituting <math>f^{(i)}(0)</math> with <math>c_i</math> one obtains
- <math>\mathcal{L}\{f(t)\}=\frac{\mathcal{L}\{\phi(t)\}+\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}c_{j-1}}{\sum_{i=0}^{n}a_is^i}</math>
The solution for f(t) is obtained by applying the inverse Laplace transform to <math>\mathcal{L}\{f(t)\}.</math>
Note that if the initial conditions are all zero, i.e.
- <math>f^{(i)}(0)=c_i=0\quad\forall i\in\{0,1,2,...\ n\}</math>
then the formula simplifies to
- <math>f(t)=\mathcal{L}^{-1}\left\{{\mathcal{L}\{\phi(t)\}\over\sum_{i=0}^{n}a_is^i}\right\}</math>
An exampleEdit
We want to solve
- <math>f(t)+4f(t)=\sin(2t)</math>
with initial conditions f(0) = 0 and f′(0)=0.
We note that
- <math>\phi(t)=\sin(2t)</math>
and we get
- <math>\mathcal{L}\{\phi(t)\}=\frac{2}{s^2+4}</math>
The equation is then equivalent to
- <math>s^2\mathcal{L}\{f(t)\}-sf(0)-f'(0)+4\mathcal{L}\{f(t)\}=\mathcal{L}\{\phi(t)\}</math>
We deduce
- <math>\mathcal{L}\{f(t)\}=\frac{2}{(s^2+4)^2}</math>
Now we apply the Laplace inverse transform to get
- <math>f(t)=\frac{1}{8}\sin(2t)-\frac{t}{4}\cos(2t)</math>
BibliographyEdit
- A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. Template:Isbn