Gravitational constant

Revision as of 20:33, 14 May 2025 by imported>Quantling (→‎Definition: Avoid having a constant determine something)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description Template:Distinguish Template:Use dmy dates

Value of Template:Mvar Unit
Template:Physconst m3kg−1s−2
Template:Val dyncm2g−2
Template:Val pcM−1⋅(km/s)2

The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity. It is also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant,Template:Efn denoted by the capital letter Template:Math.

In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their distance. In the Einstein field equations, it quantifies the relation between the geometry of spacetime and the energy–momentum tensor (also referred to as the stress–energy tensor).

The measured value of the constant is known with some certainty to four significant digits. In SI units, its value is approximately Template:Physconst

The modern notation of Newton's law involving Template:Math was introduced in the 1890s by C. V. Boys. The first implicit measurement with an accuracy within about 1% is attributed to Henry Cavendish in a 1798 experiment.Template:Efn

DefinitionEdit

According to Newton's law of universal gravitation, the magnitude of the attractive force (Template:Math) between two bodies each with a spherically symmetric density distribution is directly proportional to the product of their masses, Template:Math and Template:Math, and inversely proportional to the square of the distance, Template:Math, directed along the line connecting their centres of mass: <math display="block">F=G\frac{m_1m_2}{r^2}.</math> The constant of proportionality, Template:Math, in this non-relativistic formulation is the gravitational constant. Colloquially, the gravitational constant is also called "Big G", distinct from "small g" (Template:Math), which is the local gravitational field of Earth (also referred to as free-fall acceleration).<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>Template:Cite book</ref> Where <math>M_\oplus</math> is the mass of Earth and <math>r_\oplus</math> is the radius of Earth, the two quantities are related by: <math display="block">g = G\frac{M_\oplus}{r_\oplus^2}.</math>

The gravitational constant is a constant term in the Einstein field equations of general relativity,<ref>Template:Cite book</ref><ref name="ein">Template:Cite journal</ref> <math display="block">G_{\mu \nu} + \Lambda g_{\mu \nu} = \kappa T_{\mu \nu} \,,</math> where Template:Math is the Einstein tensor (not the gravitational constant despite the use of Template:Mvar), Template:Math is the cosmological constant, Template:Mvar is the metric tensor, Template:Mvar is the stress–energy tensor, and Template:Math is the Einstein gravitational constant, a constant originally introduced by Einstein that is directly related to the Newtonian constant of gravitation:<ref name="ein" /><ref>Template:Cite book</ref>Template:Efn <math display="block">\kappa = \frac{8\pi G}{c^4} \approx 2.076\,647(46) \times 10^{-43} \mathrm{~N^{-1}}.</math>

Value and uncertaintyEdit

The gravitational constant is a physical constant that is difficult to measure with high accuracy.<ref name=gillies>Template:Cite journal. A lengthy, detailed review. See Figure 1 and Table 2 in particular.</ref> This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale.Template:Efn

In SI units, the CODATA-recommended value of the gravitational constant is:Template:Physconst

<math>G</math> = Template:Physconst

The relative standard uncertainty is Template:Physconst.

Natural unitsEdit

Due to its use as a defining constant in some systems of natural units,<ref>Template:Cite book Extract of page 99</ref><ref>Template:Cite book Extract of page 820</ref> particularly geometrized unit systems such as Planck units and Stoney units, the value of the gravitational constant will generally have a numeric value of 1 or a value close to it when expressed in terms of those units. Due to the significant uncertainty in the measured value of G in terms of other known fundamental constants, a similar level of uncertainty will show up in the value of many quantities when expressed in such a unit system.

Orbital mechanicsEdit

Template:Further In astrophysics, it is convenient to measure distances in parsecs (pc), velocities in kilometres per second (km/s) and masses in solar units Template:Math. In these units, the gravitational constant is: <math display="block"> G \approx 4.3009 \times 10^{-3} {\mathrm{~pc{\cdot}(km/s)^2} \, M_\odot}^{-1} .</math> For situations where tides are important, the relevant length scales are solar radii rather than parsecs. In these units, the gravitational constant is: <math display="block"> G \approx 1.908\ 09 \times 10^{5} \mathrm{~(km/s)^2 } \, R_\odot M_\odot^{-1} .</math> In orbital mechanics, the period Template:Math of an object in circular orbit around a spherical object obeys <math display="block"> GM=\frac{3\pi V}{P^2} ,</math> where Template:Math is the volume inside the radius of the orbit, and Template:Math is the total mass of the two objects. It follows that

<math> P^2=\frac{3\pi}{G}\frac{V}{M}\approx 10.896 \mathrm{~ h^2 {\cdot} g {\cdot} cm^{-3} \,}\frac{V}{M}.</math>

This way of expressing Template:Math shows the relationship between the average density of a planet and the period of a satellite orbiting just above its surface.

For elliptical orbits, applying Kepler's 3rd law, expressed in units characteristic of Earth's orbit:

<math> G = 4 \pi^2 \mathrm{\ AU^3 {\cdot} yr^{-2}} \ M^{-1} \approx 39.478 \mathrm{\ AU^3 {\cdot} yr^{-2}} \ M_\odot^{-1} ,</math>

where distance is measured in terms of the semi-major axis of Earth's orbit (the astronomical unit, AU), time in years, and mass in the total mass of the orbiting system (Template:MathTemplate:Efn).

The above equation is exact only within the approximation of the Earth's orbit around the Sun as a two-body problem in Newtonian mechanics, the measured quantities contain corrections from the perturbations from other bodies in the Solar System and from general relativity.

From 1964 until 2012, however, it was used as the definition of the astronomical unit and thus held by definition: <math display="block"> 1\ \mathrm{AU} = \left( \frac{GM}{4 \pi^2} \mathrm{yr}^2 \right)^{\frac{1}{3}} \approx 1.495\,979 \times 10^{11}\mathrm{~m}.</math> Since 2012, the AU is defined as Template:Val exactly, and the equation can no longer be taken as holding precisely.

The quantity Template:Math—the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted Template:Math). The standard gravitational parameter Template:Math appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of light caused by gravitational lensing, in Kepler's laws of planetary motion, and in the formula for escape velocity.

This quantity gives a convenient simplification of various gravity-related formulas. The product Template:Math is known much more accurately than either factor is.

Values for GM
Body Template:Math Value Relative uncertainty
Sun Template:Math Template:Val<ref name="Astrodynamic Constants">{{#invoke:citation/CS1|citation CitationClass=web

}} </ref>

Template:Val
Earth Template:Math Template:Val<ref name="IAU best estimates">{{#invoke:citation/CS1|citation CitationClass=web

}} Citing

Template:Val

Calculations in celestial mechanics can also be carried out using the units of solar masses, mean solar days and astronomical units rather than standard SI units. For this purpose, the Gaussian gravitational constant was historically in widespread use, Template:Math, expressing the mean angular velocity of the Sun–Earth system.Template:Citation needed The use of this constant, and the implied definition of the astronomical unit discussed above, has been deprecated by the IAU since 2012.Template:Citation needed

History of measurementEdit

Template:Further

Early historyEdit

The existence of the constant is implied in Newton's law of universal gravitation as published in the 1680s (although its notation as Template:Math dates to the 1890s),<ref name=BoysG/> but is not calculated in his Philosophiæ Naturalis Principia Mathematica where it postulates the inverse-square law of gravitation. In the Principia, Newton considered the possibility of measuring gravity's strength by measuring the deflection of a pendulum in the vicinity of a large hill, but thought that the effect would be too small to be measurable.<ref name="Davies">Template:Cite journal</ref> Nevertheless, he had the opportunity to estimate the order of magnitude of the constant when he surmised that "the mean density of the earth might be five or six times as great as the density of water", which is equivalent to a gravitational constant of the order:<ref>"Sir Isaac Newton thought it probable, that the mean density of the earth might be five or six times as great as the density of water; and we have now found, by experiment, that it is very little less than what he had thought it to be: so much justness was even in the surmises of this wonderful man!" Hutton (1778), p. 783</ref>

Template:MathTemplate:Val

A measurement was attempted in 1738 by Pierre Bouguer and Charles Marie de La Condamine in their "Peruvian expedition". Bouguer downplayed the significance of their results in 1740, suggesting that the experiment had at least proved that the Earth could not be a hollow shell, as some thinkers of the day, including Edmond Halley, had suggested.<ref name="Poynting_p50-56">Template:Cite book</ref>

The Schiehallion experiment, proposed in 1772 and completed in 1776, was the first successful measurement of the mean density of the Earth, and thus indirectly of the gravitational constant. The result reported by Charles Hutton (1778) suggested a density of Template:Val (Template:Sfrac times the density of water), about 20% below the modern value.<ref name="Hutton">Template:Cite journal</ref> This immediately led to estimates on the densities and masses of the Sun, Moon and planets, sent by Hutton to Jérôme Lalande for inclusion in his planetary tables. As discussed above, establishing the average density of Earth is equivalent to measuring the gravitational constant, given Earth's mean radius and the mean gravitational acceleration at Earth's surface, by setting<ref name=BoysG>Boys 1894, p.330 In this lecture before the Royal Society, Boys introduces G and argues for its acceptance. See: Poynting 1894, p. 4, MacKenzie 1900, p.vi</ref> <math display="block">G = g\frac{R_\oplus^2}{M_\oplus} = \frac{3g}{4\pi R_\oplus\rho_\oplus}.</math> Based on this, Hutton's 1778 result is equivalent to Template:Nowrap.

File:Cavendish Torsion Balance Diagram.svg
Diagram of torsion balance used in the Cavendish experiment performed by Henry Cavendish in 1798, to measure G, with the help of a pulley, large balls hung from a frame were rotated into position next to the small balls.

The first direct measurement of gravitational attraction between two bodies in the laboratory was performed in 1798, seventy-one years after Newton's death, by Henry Cavendish.<ref>Published in Philosophical Transactions of the Royal Society (1798); reprint: Cavendish, Henry (1798). "Experiments to Determine the Density of the Earth". In MacKenzie, A. S., Scientific Memoirs Vol. 9: The Laws of Gravitation. American Book Co. (1900), pp. 59–105.</ref> He determined a value for Template:Math implicitly, using a torsion balance invented by the geologist Rev. John Michell (1753). He used a horizontal torsion beam with lead balls whose inertia (in relation to the torsion constant) he could tell by timing the beam's oscillation. Their faint attraction to other balls placed alongside the beam was detectable by the deflection it caused. In spite of the experimental design being due to Michell, the experiment is now known as the Cavendish experiment for its first successful execution by Cavendish.

Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, Template:Nowrap, corresponds to value of Template:Nowrap. It is remarkably accurate, being about 1% above the modern CODATA recommended value Template:Physconst, consistent with the claimed relative standard uncertainty of 0.6%.

19th centuryEdit

The accuracy of the measured value of Template:Math has increased only modestly since the original Cavendish experiment.<ref> Template:Cite book Template:Cite journal</ref> Template:Math is quite difficult to measure because gravity is much weaker than other fundamental forces, and an experimental apparatus cannot be separated from the gravitational influence of other bodies.

Measurements with pendulums were made by Francesco Carlini (1821, Template:Val), Edward Sabine (1827, Template:Val), Carlo Ignazio Giulio (1841, Template:Val) and George Biddell Airy (1854, Template:Val).<ref>Template:Cite book</ref>

Cavendish's experiment was first repeated by Ferdinand Reich (1838, 1842, 1853), who found a value of Template:Val,<ref>F. Reich, "On the Repetition of the Cavendish Experiments for Determining the mean density of the Earth, Philosophical Magazine 12: 283–284.</ref> which is actually worse than Cavendish's result, differing from the modern value by 1.5%. Cornu and Baille (1873), found Template:Val.<ref>Mackenzie (1899), p. 125.</ref>

Cavendish's experiment proved to result in more reliable measurements than pendulum experiments of the "Schiehallion" (deflection) type or "Peruvian" (period as a function of altitude) type. Pendulum experiments still continued to be performed, by Robert von Sterneck (1883, results between Template:Val) and Thomas Corwin Mendenhall (1880, Template:Val).<ref>A.S. Mackenzie, The Laws of Gravitation (1899), 127f.</ref>

Cavendish's result was first improved upon by John Henry Poynting (1891),<ref>Template:Cite book</ref> who published a value of Template:Val, differing from the modern value by 0.2%, but compatible with the modern value within the cited relative standard uncertainty of 0.55%. In addition to Poynting, measurements were made by C. V. Boys (1895)<ref>Template:Cite journal</ref> and Carl Braun (1897),<ref>Carl Braun, Denkschriften der k. Akad. d. Wiss. (Wien), math. u. naturwiss. Classe, 64 (1897). Braun (1897) quoted an optimistic relative standard uncertainty of 0.03%, Template:Val but his result was significantly worse than the 0.2% feasible at the time.</ref> with compatible results suggesting Template:Math = Template:Val. The modern notation involving the constant Template:Math was introduced by Boys in 1894<ref name=BoysG/> and becomes standard by the end of the 1890s, with values usually cited in the cgs system. Richarz and Krigar-Menzel (1898) attempted a repetition of the Cavendish experiment using 100,000 kg of lead for the attracting mass. The precision of their result of Template:Val was, however, of the same order of magnitude as the other results at the time.<ref name=Sagitov>Sagitov, M. U., "Current Status of Determinations of the Gravitational Constant and the Mass of the Earth", Soviet Astronomy, Vol. 13 (1970), 712–718, translated from Astronomicheskii Zhurnal Vol. 46, No. 4 (July–August 1969), 907–915 (table of historical experiments p. 715).</ref>

Arthur Stanley Mackenzie in The Laws of Gravitation (1899) reviews the work done in the 19th century.<ref>Mackenzie, A. Stanley, The laws of gravitation; memoirs by Newton, Bouguer and Cavendish, together with abstracts of other important memoirs, American Book Company (1900 [1899]).</ref> Poynting is the author of the article "Gravitation" in the Encyclopædia Britannica Eleventh Edition (1911). Here, he cites a value of Template:Math = Template:Val with a relative uncertainty of 0.2%.

Modern valueEdit

Paul R. Heyl (1930) published the value of Template:Val (relative uncertainty 0.1%),<ref>Template:Cite journal</ref> improved to Template:Val (relative uncertainty 0.045% = 450 ppm) in 1942.<ref>P. R. Heyl and P. Chrzanowski (1942), cited after Sagitov (1969:715).</ref>

However, Heyl used the statistical spread as his standard deviation, and he admitted himself that measurements using the same material yielded very similar results while measurements using different materials yielded vastly different results. He spent the next 12 years after his 1930 paper to do more precise measurements, hoping that the composition-dependent effect would go away, but it did not, as he noted in his final paper from the year 1942.

Published values of Template:Mvar derived from high-precision measurements since the 1950s have remained compatible with Heyl (1930), but within the relative uncertainty of about 0.1% (or 1000 ppm) have varied rather broadly, and it is not entirely clear whether the uncertainty has been reduced at all since the 1942 measurement. Some measurements published in the 1980s to 2000s were, in fact, mutually exclusive.<ref name=gillies/><ref name=codata2002>Template:Cite journal Section Q (pp. 42–47) describes the mutually inconsistent measurement experiments from which the CODATA value for Template:Mvar was derived.</ref> Establishing a standard value for Template:Mvar with a relative standard uncertainty better than 0.1% has therefore remained rather speculative.

By 1969, the value recommended by the National Institute of Standards and Technology (NIST) was cited with a relative standard uncertainty of 0.046% (460 ppm), lowered to 0.012% (120 ppm) by 1986. But the continued publication of conflicting measurements led NIST to considerably increase the standard uncertainty in the 1998 recommended value, by a factor of 12, to a standard uncertainty of 0.15%, larger than the one given by Heyl (1930).

The uncertainty was again lowered in 2002 and 2006, but once again raised, by a more conservative 20%, in 2010, matching the relative standard uncertainty of 120 ppm published in 1986.<ref>Template:Cite journal</ref> For the 2014 update, CODATA reduced the uncertainty to 46 ppm, less than half the 2010 value, and one order of magnitude below the 1969 recommendation.

The following table shows the NIST recommended values published since 1969:

File:Gravitational constant historical.png
Timeline of measurements and recommended values for G since 1900: values recommended based on a literature review are shown in red, individual torsion balance experiments in blue, other types of experiments in green.
Recommended values for G
Year G
Template:Bracket
Relative standard uncertainty Ref.
1969 Template:Val 460 ppm <ref>Template:Cite journal</ref>
1973 Template:Val 730 ppm <ref>Template:Cite journal</ref>
1986 Template:Val 120 ppm <ref>Template:Cite journal</ref>
1998 Template:Val 1500 ppm <ref>Template:Cite journal</ref>
2002 Template:Val 150 ppm <ref>Template:Cite journal</ref>
2006 Template:Val 100 ppm <ref>Template:Cite journal</ref>
2010 Template:Val 120 ppm <ref>Template:Cite journal</ref>
2014 Template:Val 46 ppm <ref>Template:Cite journal</ref>
2018 Template:Val 22 ppm <ref>Eite Tiesinga, Peter J. Mohr, David B. Newell, and Barry N. Taylor (2019), "The 2018 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 8.0). Database developed by J. Baker, M. Douma, and S. Kotochigova. National Institute of Standards and Technology, Gaithersburg, MD 20899.</ref>
2022 Template:Val 22 ppm <ref>Template:Citation</ref>

In the January 2007 issue of Science, Fixler et al. described a measurement of the gravitational constant by a new technique, atom interferometry, reporting a value of Template:Nowrap, 0.28% (2800 ppm) higher than the 2006 CODATA value.<ref>Template:Cite journal</ref> An improved cold atom measurement by Rosi et al. was published in 2014 of Template:Nowrap.<ref> Template:Cite journal</ref><ref> Template:Cite journal</ref> Although much closer to the accepted value (suggesting that the Fixler et al. measurement was erroneous), this result was 325 ppm below the recommended 2014 CODATA value, with non-overlapping standard uncertainty intervals.

As of 2018, efforts to re-evaluate the conflicting results of measurements are underway, coordinated by NIST, notably a repetition of the experiments reported by Quinn et al. (2013).<ref>Template:Cite journal Referencing:

The 2018 experiment was described by Template:Cite conference</ref>

In August 2018, a Chinese research group announced new measurements based on torsion balances, Template:Val and Template:Val based on two different methods.<ref>Template:Cite journal. See also: Template:Cite news</ref> These are claimed as the most accurate measurements ever made, with standard uncertainties cited as low as 12 ppm. The difference of 2.7Template:Px1σ between the two results suggests there could be sources of error unaccounted for.

ConstancyEdit

Template:Further Analysis of observations of 580 type Ia supernovae shows that the gravitational constant has varied by less than one part in ten billion per year over the last nine billion years.<ref>Template:Cite journal</ref>

See alsoEdit

Template:Portal Template:Div col

Template:Div col end

ReferencesEdit

Footnotes

Template:Notelist

Citations

Template:Reflist

SourcesEdit

Template:Refbegin

Template:Refend

External linksEdit

Template:Isaac Newton Template:Scientists whose names are used in physical constants Template:Authority control