Template:Short description Template:Redirect Template:Use mdy dates Template:Infobox spaceflight
MESSENGER was a NASA robotic space probe that orbited the planet Mercury between 2011 and 2015, studying Mercury's chemical composition, geology, and magnetic field.<ref name=CircleMerc>Template:Cite news</ref><ref>Template:Cite journal</ref> The name is a backronym for Mercury Surface, Space Environment, Geochemistry, and Ranging, and a reference to the messenger god Mercury from Roman mythology.
MESSENGER was launched aboard a Delta II rocket in August 2004. Its path involved a complex series of flybys – the spacecraft flew by Earth once, Venus twice, and Mercury itself three times, allowing it to decelerate relative to Mercury using minimal fuel. During its first flyby of Mercury in January 2008, MESSENGER became the second mission, after Mariner 10 in 1975, to reach Mercury.<ref name="jhuapl1">Template:Cite press release</ref><ref name="jhuapl2">Template:Cite press release</ref><ref name="jhuapl3">Template:Cite press release</ref>
MESSENGER entered orbit around Mercury on March 18, 2011, becoming the first spacecraft to do so.<ref name=CircleMerc/> It successfully completed its primary mission in 2012.<ref name=ExMissionCompleted2013/> Following two mission extensions, the spacecraft used the last of its maneuvering propellant to deorbit, impacting the surface of Mercury on April 30, 2015.<ref name="NYT-20150430">Template:Cite news</ref>
Mission overviewEdit
MESSENGERTemplate:'s formal data collection mission began on April 4, 2011.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}Template:Cbignore</ref> The primary mission was completed on March 17, 2012, having collected close to 100,000 images.<ref name="jhuap14">Template:Cite press release</ref> MESSENGER achieved 100% mapping of Mercury on March 6, 2013, and completed its first year-long extended mission on March 17, 2013.<ref name=ExMissionCompleted2013>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The probe's second extended mission lasted for over two years, but as its low orbit degraded, it required reboosts to avoid impact. It conducted its final reboost burns on October 24, 2014, and January 21, 2015, before crashing into Mercury on April 30, 2015.<ref name=EclipseReboost>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name='Bang'>Template:Cite news</ref><ref name=200,000ImagesSurpassed>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
During its stay in Mercury orbit, the probe's instruments yielded significant data, including a characterization of Mercury's magnetic field<ref name = Nantes5/> and the discovery of water ice at the planet's north pole,<ref name=IceonMercury/><ref>Template:Cite news</ref> which had long been suspected on the basis of Earth-based radar data.<ref name="HarmonSlade1994">Template:Cite journal</ref>
Mission backgroundEdit
Previous missionsEdit
In 1973, Mariner 10 was launched by NASA to make multiple flyby encounters of Venus and Mercury. Mariner 10 provided the first detailed data of Mercury, mapping 40–45% of the surface.<ref name="USATMessenger">Template:Cite news</ref> Mariner 10's final flyby of Mercury occurred on March 16, 1975. No subsequent close-range observations of the planet would take place for more than 30 years.
Proposals for the missionEdit
In 1998, a study detailed a proposed mission to send an orbiting spacecraft to Mercury, as the planet was at that point the least-explored of the inner planets. In the years following the Mariner 10 mission, subsequent mission proposals to revisit Mercury had appeared too costly, requiring large quantities of propellant and a heavy lift launch vehicle. Moreover, inserting a spacecraft into orbit around Mercury is difficult, because a probe approaching on a direct path from Earth would be accelerated by the Sun's gravity and pass Mercury far too quickly to orbit it. However, using a trajectory designed by Chen-wan Yen<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> in 1985, the study showed it was possible to execute a Discovery-class mission by using multiple, consecutive gravity assist, 'swingby' maneuvers around Venus and Mercury, in combination with minor propulsive trajectory corrections, to gradually slow the spacecraft and thereby minimize propellant needs.<ref name="1998Design">Template:Cite journal</ref>
ObjectivesEdit
The MESSENGER mission was designed to study the characteristics and environment of Mercury from orbit. The scientific objectives of the mission were:<ref name='Objectives1'>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
- to characterize the chemical composition of Mercury's surface.
- to study the planet's geologic history.
- to elucidate the nature of the global magnetic field (magnetosphere).
- to determine the size and state of the core.
- to determine the volatile inventory at the poles.
- to study the nature of Mercury's exosphere.
Spacecraft designEdit
The MESSENGER spacecraft was designed and built at the Johns Hopkins University Applied Physics Laboratory. Science operations were managed by Sean Solomon as principal investigator, and mission operations were also conducted at JHU/APL.<ref name="MESSENGERLaunch"/> The MESSENGER bus measured Template:Convert tall, Template:Convert wide, and Template:Convert deep. The bus was primarily constructed with four graphite fiber / cyanate ester composite panels that supported the propellant tanks, the large velocity adjust (LVA) thruster, attitude monitors and correction thrusters, the antennas, the instrument pallet, and a large ceramic-cloth sunshade, measuring Template:Convert tall and Template:Convert wide, for passive thermal control.<ref name="MESSENGERLaunch">Template:Cite press release</ref> At launch, the spacecraft weighed approximately Template:Convert with its full load of propellant.<ref>Template:Cite news</ref> MESSENGER's total mission cost, including the cost of the spacecraft's construction, was estimated at under US$450 million.<ref>Template:Cite press release</ref>
Attitude control and propulsionEdit
Main propulsion was provided by the 645 N, 317 sec. Isp bipropellant (hydrazine and nitrogen tetroxide) large velocity assist (LVA) thruster. The model used was the LEROS 1b, developed and manufactured at AMPAC‐ISP's Westcott works, in the United Kingdom. The spacecraft was designed to carry Template:Convert of propellant and helium pressurizer for the LVA.<ref name="MESSENGERLaunch"/>
Four Template:Convert monopropellant thrusters provided spacecraft steering during main thruster burns, and twelve Template:Convert monopropellant thrusters were used for attitude control. For precision attitude control, a reaction wheel attitude control system was also included.<ref name="MESSENGERLaunch"/> Information for attitude control was provided by star trackers, an inertial measurement unit and six Sun sensors.<ref name="MESSENGERLaunch"/>
CommunicationsEdit
The probe included two small deep space transponders for communications with the Deep Space Network and three kinds of antennas: a high gain phased array whose main beam could be electronically steered in one plane, a medium-gain "fan-beam" antenna and a low gain horn with a broad pattern. The high gain antenna was used as transmit-only at 8.4 GHz, the medium-gain and low gain antennas transmit at 8.4 GHz and receive at 7.2 GHz, and all three antennas operate with right-hand circularly polarized (RHCP) radiation. One of each of these antennas was mounted on the front of the probe facing the Sun, and one of each was mounted to the back of the probe facing away from the Sun.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
PowerEdit
The space probe was powered by a two-panel gallium arsenide/germanium solar array providing an average of 450 watts while in Mercury orbit. Each panel was rotatable and included optical solar reflectors to balance the temperature of the array. Power was stored in a common-pressure-vessel, 23-ampere-hour nickel–hydrogen battery, with 11 vessels and two cells per vessel.<ref name="MESSENGERLaunch"/>
Computer and softwareEdit
The spacecraft's onboard computer system was contained in an Integrated Electronics Module (IEM), a device that combined core avionics into a single box. The computer featured two radiation-hardened IBM RAD6000s, a 25 megahertz main processor, and a 10 MHz fault protection processor. For redundancy, the spacecraft carried a pair of identical IEMs. For data storage, the spacecraft carried two solid-state recorders able to store up to one gigabyte each. The IBM RAD6000 main processor collected, compressed, and stored data from MESSENGER's instruments for later playback to Earth.<ref name="MESSENGERLaunch"/>
MESSENGER used a software suite called SciBox to simulate its orbit and instruments, in order to "choreograph the complicated process of maximizing the scientific return from the mission and minimizing conflicts between instrument observations, while at the same time meeting all spacecraft constraints on pointing, data downlink rates, and onboard data storage capacity."<ref name="jhuapl"/>
Scientific instrumentsEdit
Mercury Dual Imaging System (MDIS)Edit
Included two CCD cameras, a narrow-angle camera (NAC) and a wide-angle camera (WAC) mounted to a pivoting platform. The camera system provided a complete map of the surface of Mercury at a resolution of Template:Convert, and images of regions of geologic interest at Template:Convert. Color imaging was possible only with the narrow-band filter wheel attached to the wide-angle camera.<ref name='MDISDescription'>Template:Cite journal</ref><ref name="NSSDCMDIS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='MDISDescription'/>
- Flyby Phase:
- Acquisition of near-global coverage at ≈Template:Convert.
- Multispectral mapping at ≈Template:Convert.
- Orbital Phase:
- A nadir-looking monochrome global photomosaic at moderate solar incidence angles (55°–75°) and Template:Convert or better sampling resolution.
- A 25°-off-nadir mosaic to complement the nadir-looking mosaic for global stereo mapping.
- Completion of the multispectral mapping begun during the flybys.
- High-resolution (Template:Convert) image strips across features representative of major geologic units and structures.
Filters<ref name='MDIS2007'>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
- Principal investigator: Scott Murchie / Johns Hopkins University
Gamma-Ray Spectrometer (GRS)Edit
Measured gamma-ray emissions from the surface of Mercury to determine the planet's composition by detecting certain elements (oxygen, silicon, sulfur, iron, hydrogen, potassium, thorium, uranium) to a depth of 10 cm.<ref name='GRNSDescription'>Template:Cite journal</ref><ref name="NSSDCGRNS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='GRNSDescription'/>
- Provide surface abundances of major elements.
- Provide surface abundances of Fe, Si, and K, infer alkali depletion from K abundances, and provide abundance limits on H (water ice) and S (if present) at the poles.
- Map surface element abundances where possible, and otherwise provide surface-averaged abundances or establish upper limits.
- Principal investigator: William Boynton / University of Arizona
Neutron Spectrometer (NS)Edit
Determined the hydrogen mineral composition to a depth of 40 cm by detecting low-energy neutrons resulting from the collision of cosmic rays with the minerals.<ref name='GRNSDescription' /><ref name="NSSDCGRNS"/>
Objectives:<ref name='GRNSDescription' />
- Establish and map the abundance of hydrogen over most of the northern hemisphere of Mercury.
- Investigate the possible presence of water ice within and near permanently shaded craters near the north pole.
- Provide secondary evidence to aid in interpreting GRS measured gamma-ray line strengths in terms of elemental abundances.
- Outline surface domains at the base of both northern and southern cusps of the magnetosphere where the solar wind can implant hydrogen in surface material.
- Principal investigator: William Boynton / University of Arizona
X-Ray Spectrometer (XRS)Edit
Mapped mineral composition within the top millimeter of the surface on Mercury by detecting X-ray spectral lines from magnesium, aluminum, sulphur, calcium, titanium, and iron, in the 1–10 keV range.<ref name='XRSDescription'>Template:Cite journal</ref><ref name="NSSDCXRS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='XRSDescription'/>
- Determine the history of the formation of Mercury
- Characterize the composition of surface elements by measuring the X-ray emissions induced by the incident solar flux.
- Principal investigator: George Ho / APL
Magnetometer (MAG)Edit
Measured the magnetic field around Mercury in detail to determine the strength and average position of the field.<ref name='MAGDescription'>Template:Cite journal</ref><ref name="NSSDCMAG">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='MAGDescription'/>
- Investigate the structure of Mercury's magnetic field and its interaction with the solar wind.
- Characterize the geometry and time variability of the magnetospheric field.
- Detect wave-particle interactions with the magnetosphere.
- Observe magnetotail dynamics, including phenomena possibly analogous to substorms in the Earth's magnetosphere.
- Characterize the magnetopause structure and dynamics.
- Characterize field-aligned currents that link the planet with the magnetosphere.
- Principal investigator: Mario Acuna / NASA Goddard Space Flight Center
Mercury Laser Altimeter (MLA)Edit
Provided detailed information regarding the height of landforms on the surface of Mercury by detecting the light of an infrared laser as the light bounced off the surface. <ref name='MLADescription'>Template:Cite journal</ref><ref name="NSSDCMLA">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='MLADescription'/>
- Provide a high-precision topographic map of the high northern latitude regions.
- Measure the long-wavelength topographic features at mid-to-low northern latitudes.
- Determine topographic profiles across major geologic features in the northern hemisphere.
- Detect and quantify the planet's forced physical librations by tracking the motion of large-scale topographic features as a function of time.
- Measure the surface reflectivity of Mercury at the MLA operating wavelength of 1,064 nanometers.
- Principal investigator: David Smith / GSFC
Mercury Atmospheric and Surface Composition Spectrometer (MASCS)Edit
Determined the characteristics of the tenuous atmosphere surrounding Mercury by measuring ultraviolet light emissions, and ascertained the prevalence of iron and titanium minerals on the surface by measuring the reflectance of infrared light.<ref name='MASCSDescription'>Template:Cite journal</ref><ref name="NSSDCMASCS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='MASCSDescription'/>
- Characterize the composition, structure, and temporal behavior of the exosphere.
- Investigate the processes that generate and maintain the exosphere.
- Determine the relationship between exospheric and surface composition.
- Search for polar deposits of volatile material, and determine how are the accumulation of these deposits are related to exospheric processes.
- Principal investigator: William McClintock / University of Colorado<ref>{{#invoke:citation/CS1|citation
|CitationClass=web }}</ref>
Energetic Particle and Plasma Spectrometer (EPPS)Edit
Measured the charged particles in the magnetosphere around Mercury using an energetic particle spectrometer (EPS) and the charged particles that come from the surface using a fast imaging plasma spectrometer (FIPS).<ref name='EPPSDescription'>Template:Cite journal</ref><ref name="NSSDCEPPS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Objectives:<ref name='EPPSDescription'/>
- Determine the structure of the planet's magnetic field.
- Characterize exosphere neutrals and accelerated magnetospheric ions.
- Determine the composition of the radar-reflective materials at Mercury's poles.
- Determine the electrical properties of the crust/atmosphere/environment interface.
- Determine characteristics of the dynamics of Mercury's magnetosphere and their relationships to external drivers and their internal conditions.
- Measure interplanetary plasma properties in cruise and in Mercury vicinity.
- Principal investigator: Barry Mauk / APL
Radio Science (RS)Edit
Measured the gravity of Mercury and the state of the planetary core by utilizing the spacecraft's positioning data.<ref name="NSSDCRS">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name='RSDescription'>Template:Cite journal</ref>
Objectives:<ref name='RSDescription'/>
- Determine the position of the spacecraft during both the cruise and orbital phases of the mission.
- Observe gravitational perturbations from Mercury to investigate the spatial variations of density within the planet's interior, and a time-varying component in Mercury's gravity to quantify the amplitude of Mercury's libration.
- Provide precise measurements of the range of the MESSENGER spacecraft to the surface of Mercury for determining proper altitude mapping with the MLA.
- Principal investigator: David Smith / NASA Goddard Space Flight Center
- Images of the spacecraft
- MESSENGER - Sonda.png
Diagram of MESSENGER.
- MESSENGER - installation of solar panels.jpg
The assembly of MESSENGERTemplate:'s solar panels by APL technicians.
- MESSENGER Assembly.jpg
Technicians prepare MESSENGER for transfer to a hazardous processing facility.
- MESSENGER 04pd1465.jpg
Attachment of the PAM to MESSENGER. The ceramic-cloth sunshade is prominent in this view.
- Hypergolic Fuel for MESSENGER.jpg
A suited worker looks over the hydrazine fuel supply to be loaded in MESSENGER.
Mission profileEdit
Timeline of key events<ref name=ExMissionCompleted2013/><ref name="NYT-20150427">Template:Cite news</ref><ref name="EarthFlyby">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref name="MercuryFlyby1">Template:Cite press release</ref><ref name="MercuryFlyby2">Template:Cite press release</ref><ref name="MercuryFlyby3">Template:Cite press release</ref><ref name="MGROrbitInsert"/> | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Launch and trajectoryEdit
The MESSENGER probe was launched on August 3, 2004, at 06:15:56 UTC by NASA from Space Launch Complex 17B at the Cape Canaveral Air Force Station in Florida, aboard a Delta II 7925 launch vehicle. The complete burn sequence lasted 57 minutes bringing the spacecraft into a heliocentric orbit, with a final velocity of 10.68 km/s (6.64 miles/s) and sending the probe into a 7.9 billion-kilometer (4.9 billion mi) trajectory that took 6 years, 7 months and 16 days before its orbital insertion on March 18, 2011.<ref name="MESSENGERLaunch"/>
Traveling to Mercury and entering orbit requires an extremely large velocity change (see delta-v) because Mercury's orbit is deep in the Sun's gravity well. On a direct course from Earth to Mercury, a spacecraft is constantly accelerated as it falls toward the Sun, and will arrive at Mercury with a velocity too high to achieve orbit without excessive use of fuel. For planets with an atmosphere, such as Venus and Mars, spacecraft can minimize their fuel consumption upon arrival by using friction with the atmosphere to enter orbit (aerocapture), or can briefly fire their rocket engines to enter into orbit followed by a reduction of the orbit by aerobraking. However, the tenuous atmosphere of Mercury is far too thin for these maneuvers. Instead, MESSENGER extensively used gravity assist maneuvers at Earth, Venus, and Mercury to reduce the speed relative to Mercury, then used its large rocket engine to enter into an elliptical orbit around the planet. The multi-flyby process greatly reduced the amount of propellant necessary to slow the spacecraft, but at the cost of prolonging the trip by many years and to a total distance of 7.9 billion kilometers (4.9 billion miles).
Several planned thruster firings en route to Mercury were unnecessary, because these fine course adjustments were performed using solar radiation pressure acting on MESSENGER's solar panels.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> To further minimize the amount of necessary propellant, the spacecraft orbital insertion targeted a highly elliptical orbit around Mercury.
The elongated orbit had two other benefits: It allowed the spacecraft time to cool after the times it was between the hot surface of Mercury and the Sun, and also it allowed the spacecraft to measure the effects of solar wind and the magnetic fields of the planet at various distances while still allowing close-up measurements and photographs of the surface and exosphere. The spacecraft was originally scheduled to launch during a 12-day window that beginning May 11, 2004. On March 26, 2004, NASA announced the launch would be moved to a later, 15-day launch window beginning July 30, 2004, to allow for further testing of the spacecraft.<ref>Template:Cite press release</ref> This change significantly altered the trajectory of the mission and delayed the arrival at Mercury by two years. The original plan called for three fly-by maneuvers past Venus, with Mercury orbit insertion scheduled for 2009. The trajectory was changed to include one Earth flyby, two Venus flybys, and three Mercury flybys before orbit insertion on March 18, 2011.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
- MESSENGER - exploded launch vehicle diagram.png
Exploded diagram of Delta II launch vehicle with MESSENGER
- MESSENGER launch on Delta 7925 rocket.jpg
The launch of MESSENGER on a Delta II launch vehicle.
- Animation of MESSENGER trajectory.gif
Animation of MESSENGERTemplate:'s trajectory from August 3, 2004, to May 1, 2015
Template:Legend2Template:·Template:Legend2Template:·Template:Legend2 Template:·Template:Legend2 - MESSENGER trajectory.svg
Interplanetary trajectory of the MESSENGER orbiter.
Earth flybyEdit
MESSENGER performed an Earth flyby one year after launch, on August 2, 2005, with the closest approach at 19:13 UTC at an altitude of 2,347 kilometers (1,458 statute miles) over central Mongolia. On December 12, 2005, a 524-second-long burn (Deep-Space Maneuver or DSM-1) of the large thruster adjusted the trajectory for the upcoming Venus flyby by 316 m/s.<ref>Template:Cite press release</ref>
During the Earth flyby, the MESSENGER team imaged the Earth and Moon using MDIS and checked the status of several other instruments observing the atmospheric and surface compositions and testing the magnetosphere and determining that all instruments tested were working as expected. This calibration period was intended to ensure accurate interpretation of data when the spacecraft entered orbit around Mercury. Ensuring that the instruments functioned correctly at such an early stage in the mission allowed opportunity for multiple minor errors to be dealt with.<ref name="MGREarthFlyby">Template:Cite press release</ref>
The Earth flyby was used to investigate the flyby anomaly, where some spacecraft have been observed to have trajectories that differ slightly from those predicted. However no anomaly was observed in MESSENGER's flyby.<ref>Template:Cite journal</ref>
- MESSENGERearth.jpg
A view of Earth from MESSENGER during its Earth flyby.
- View of Earth from MESSENGER.jpg
A view of Earth from MESSENGER during its Earth flyby.
- Mdis depart anot.ogv
Earth flyby sequence captured on August 3, 2005 (Full-size video).
Two Venus flybysEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} On October 24, 2006, at 08:34 UTC, MESSENGER encountered Venus at an altitude of Template:Convert. During the encounter, MESSENGER passed behind Venus and entered superior conjunction, a period when Earth was on the exact opposite side of the Solar System, with the Sun inhibiting radio contact. For this reason, no scientific observations were conducted during the flyby. Communication with the spacecraft was reestablished in late November and performed a deep space maneuver on December 12, to correct the trajectory to encounter Venus in a second flyby.<ref name="MGRVenusFlyby1">Template:Cite press release</ref>
On June 5, 2007, at 23:08 UTC, MESSENGER performed a second flyby of Venus at an altitude of Template:Convert, for the greatest velocity reduction of the mission. During the encounter, all instruments were used to observe Venus and prepare for the following Mercury encounters. The encounter provided visible and near-infrared imaging data of the upper atmosphere of Venus. Ultraviolet and X-ray spectrometry of the upper atmosphere were also recorded, to characterize the composition. The ESA's Venus Express was also orbiting during the encounter, providing the first opportunity for simultaneous measurement of particle-and-field characteristics of the planet.<ref>Template:Cite press release</ref>
- MESSENGERvenus1approach.jpg
Venus imaged by MESSENGER on its first flyby of the planet in 2006.
- Venus 2 Approach Image.jpg
Venus imaged by MESSENGER on its second flyby of the planet in 2007.
- MESSENGER - Venus 630 nm stretch.jpg
A more detailed image of Venus MESSENGER on the second flyby of the planet.
- MESSENGER - Venus2 departure seq.jpg
Sequence of images as MESSENGER departs after the second flyby of the planet.
Three Mercury flybysEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} MESSENGER made a flyby of Mercury on January 14, 2008 (making its closest approach of 200 km above the surface of Mercury at 19:04:39 UTC), followed by a second flyby on October 6, 2008.<ref name="jhuapl1"/> MESSENGER executed a final flyby on September 29, 2009, further slowing down the spacecraft.<ref name="jhuapl2"/><ref name="jhuapl3"/> Sometime during the closest approach of the last flyby, the spacecraft entered safe mode. Although this had no effect on the trajectory necessary for later orbit insertion, it resulted in the loss of science data and images that were planned for the outbound leg of the fly-by. The spacecraft had fully recovered by about seven hours later.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> One last deep space maneuver, DSM-5, was executed on November 24, 2009, at 22:45 UTC to provide the required Template:Convert velocity change for the scheduled Mercury orbit insertion on March 18, 2011, marking the beginning of the orbital mission.<ref>Template:Cite press release</ref>
- Mercury in color c1000 700 430.png
The first high-resolution color Wide Angle Camera image of Mercury acquired by MESSENGER.
- MESSENGER first photo of unseen side of mercury.jpg
Mercury from later in the first flyby, showing many previously unknown features
- CW0131775256F Kuiper Crater.png
View from the second flyby in October 2008, with Kuiper crater near center
- MESSENGER - CN0162744010M RA 3 web.png
Smooth plains of Borealis Planitia imaged by MESSENGER during the third flyby of the planet.
- MESSENGER EN0108828359M.png
An image of part of the previously unseen side of the planet.
- MESSENGER - BV Microsymposium49.jpg
Lava-flooded craters and large expanses of smooth volcanic plains on Mercury.
- Rachmaninoff crater.png
View with Rachmaninoff crater, from third flyby
Orbital insertionEdit
The thruster maneuver to insert the probe into Mercury's orbit began at 00:45 UTC on March 18, 2011. The 0.9 km/s (0.5 mi./sec.) braking maneuver lasted about 15 minutes, with confirmation that the craft was in Mercury orbit received at 01:10 UTC on March 18 (9:10 PM, March 17 EDT).<ref name="MGROrbitInsert">Template:Cite press release</ref> Mission lead engineer Eric Finnegan indicated that the spacecraft had achieved a near-perfect orbit.<ref>Template:Cite news</ref>
MESSENGER's orbit was highly elliptical, taking it within Template:Convert of Mercury's surface and then Template:Convert away from it every twelve hours. This orbit was chosen to shield the probe from the heat radiated by Mercury's hot surface. Only a small portion of each orbit was at a low altitude, where the spacecraft was subjected to radiative heating from the hot side of the planet.<ref>Template:Cite news</ref>
- Animation of MESSENGER trajectory around Mercury.gif
Animation of MESSENGERTemplate:'s trajectory around Mercury from March 15, 2011, to December 30, 2014
Template:Legend2Template:·Template:Legend2 - MESSENGERannouncement.jpg
Charles Bolden and colleagues wait for news from the MESSENGER probe.
- Celebrating Mercury Orbit.jpg
Charles Bolden congratulates Eric Finnegan following the successful orbital insertion.
- First ever photograph from Mercury orbit.jpg
The first-ever photograph from Mercury orbit, taken by MESSENGER on March 29, 2011.
- MercuryOrbitInsertionDirectionofSunFull.jpg
A simplified chart showing the path of MESSENGERTemplate:'s orbital insertion.
Primary scienceEdit
After MESSENGER's orbital insertion, an eighteen-day commissioning phase took place. The supervising personnel switched on and tested the craft's science instruments to ensure they had completed the journey without damage.<ref name="OrbitInsertionPressKit">Template:Cite press release</ref> The commissioning phase "demonstrated that the spacecraft and payload [were] all operating nominally, notwithstanding Mercury's challenging environment."<ref name="jhuapl"/>
The primary mission began as planned on April 4, 2011, with MESSENGER orbiting Mercury once every twelve hours for an intended duration of twelve Earth months, the equivalent of two solar days on Mercury.<ref name="jhuapl">"MESSENGER Kicks Off Yearlong Campaign of Mercury Science" Template:Webarchive. JHU – APL. April 4, 2011. Retrieved November 23, 2011.</ref> Principal Investigator Sean Solomon, then of the Carnegie Institution of Washington, said: "With the beginning today of the primary science phase of the mission, we will be making nearly continuous observations that will allow us to gain the first global perspective on the innermost planet. Moreover, as solar activity steadily increases, we will have a front-row seat on the most dynamic magnetosphere–atmosphere system in the Solar System."<ref name="jhuapl"/>
On October 5, 2011, the scientific results obtained by MESSENGER during its first six terrestrial months in Mercury's orbit were presented in a series of papers at the European Planetary Science Congress in Nantes, France. Among the discoveries presented were the unexpectedly high concentrations of magnesium and calcium found in the atmosphere of Mercury's nightside, and the fact that Mercury's magnetic field is offset far to the north of the planet's center.<ref name = Nantes5>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
- MESSENGERmercurylimb.PNG
A monochrome image of Mercury from MESSENGER, with Warhol at center.
- Stevenson crater (MESSENGER).png
Stevenson crater, with two perpendicular secondary crater chains running through its center.
- MESSENGERsouthpole.png
A south polar projection of Mercury.
- MESSENGERridges.png
A close snapshot of ridges near Mercury's south pole.
- Tectonically Active Planet Mercury.jpg
A false-color MESSENGER composite image of Mercury shows previously undetected fault scarps— cliff-like landforms resembling stairs that are small enough that scientists believe they are geologically young. This shows that Mercury is still contracting, and that Earth is not the only tectonically active Solar System planet.
Extended missionEdit
In November 2011, NASA announced that the MESSENGER mission would be extended by one year, allowing the spacecraft to observe the 2012 solar maximum.<ref name=Extended2013/> Its extended mission began on March 17, 2012, and continued until March 17, 2013. Between April 16 and 20, 2012, MESSENGER carried out a series of thruster manoeuvres, placing it in an eight-hour orbit to conduct further scans of Mercury.<ref>"Messenger settles into new orbit to probe Mercury" Template:Webarchive. Wired UK. April 24, 2012. Retrieved April 29, 2012.</ref>
In November 2012, NASA reported that MESSENGER had discovered a possibility of both water ice and organic compounds in permanently shadowed craters in Mercury's north pole.<ref name="IceonMercury">Template:Cite news</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> In February 2013, NASA published the most detailed and accurate 3D map of Mercury to date, assembled from thousands of images taken by MESSENGER.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> MESSENGER completed its first extended mission on March 17, 2013,<ref name=ExMissionCompleted2013/> and its second lasted until April 2015.<ref name=200,000ImagesSurpassed/> In November 2013, MESSENGER was among the numerous space assets that imaged Comet Encke (2P/Encke) and Comet ISON (C/2012 S1).<ref>"MESSENGER Detects Comets ISON and Encke, Prepares for Closer Encounters". USRA.edu. November 15, 2013. Retrieved January 23, 2015.</ref><ref name="NASA-20131206">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name="ARXIV-20140508">Template:Cite arXiv</ref> As its orbit began to decay in early 2015, MESSENGER was able to take highly detailed close-up photographs of ice-filled craters and other landforms at Mercury's north pole.<ref name=DyingGifts>Template:Cite news</ref> After the mission was completed, review of the radio ranging data provided the first measurement of the rate of mass loss from the Sun.<ref>Template:Cite journal</ref>
- PIA19247-Mercury-NPolarRegion-Messenger20150316.jpg
False-color map showing maximum temperatures of north polar region.
- Crater Apollodor and Pantheon Fossae.jpg
Crater Apollodorus, with the Pantheon Fossae radiating from it.
- EW1026656707Gnomap.png
Crater rays streaking across the planet's southern hemisphere.
- Hollows in Sholem Aleichem.jpg
CitationClass=web }}</ref>
- PIA19450-PlanetMercury-CalorisBasin-20150501.jpg
Perspective view of Caloris Basin – high (red); low (blue).
Discovery of water, organic compounds and volcanismEdit
On July 3, 2008, the MESSENGER team announced that the probe had discovered large amounts of water present in Mercury's exosphere, which was an unexpected finding.<ref name="planetary society">Template:Cite news</ref> In the later years of its mission, MESSENGER also provided visual evidence of past volcanic activity on the surface of Mercury,<ref name="Volcanism 2011">Template:Cite journal</ref> as well as evidence for a liquid iron planetary core.<ref name="planetary society"/> The probe also constructed the most detailed and accurate maps of Mercury to date, and furthermore discovered carbon-containing organic compounds and water ice inside permanently shadowed craters near the north pole.<ref name="results 2015">Template:Cite news</ref>
- Gravity Anomalies on Mercury.jpg
Mass concentrations (red; Caloris Basin at center, Sobkou Planitia at right), detected via gravity anomalies, provide evidence for subsurface structure and evolution.
- PIA19420-Mercury-NorthHem-Topography-MLA-Messenger-20150416.jpg
Northern hemisphere topography from MLA data shows a 10 km vertical range: high (red); low (purple).
- Unmasking the Secrets of Mercury.jpg
MASCS spectral scan of Mercury's surface.
- PIA19411-Mercury-WaterIce-Radar-MDIS-Messenger-20150416.jpg
Water ice (yellow) in permanently shaded craters of Mercury's north polar region
Solar System portraitEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} On February 18, 2011, a portrait of the Solar System was published on the MESSENGER website. The mosaic contained 34 images, acquired by the MDIS instrument during November 2010. All the planets were visible with the exception of Uranus and Neptune, due to their vast distances from the Sun. The MESSENGER "family portrait" was intended to be complementary to the Voyager family portrait, which was acquired from the outer Solar System by Voyager 1 on February 14, 1990.<ref name="APLPortrait">Template:Cite press release</ref>
View of a total lunar eclipseEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}
On October 8, 2014 from 9:18 UTC to 10:18 UTC, MESSENGER took 31 images, taken two minutes apart, of the Earth and the Moon, as the Moon underwent a total lunar eclipse. MESSENGER was 107 million kilometers (66 million miles) from the Earth at the time of the lunar eclipse. The Earth is about 5 pixels across and the Moon is just over 1 pixel across in the field of view of the NAC, with about 40 pixels distance between them. The images are zoomed by a factor of two and the Moon's brightness has been increased by a factor of about 25 to show its disappearance more clearly. This was the first observation of a lunar eclipse, of Earth's Moon, in history to be viewed from another planet.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}Template:Source-attribution</ref><ref name=EclipseReboost/>
End of missionEdit
After running out of propellant for course adjustments, MESSENGER entered its expected terminal phase of orbital decay in late 2014. The spacecraft's operation was extended by several weeks by exploiting its remaining supply of helium gas, which was used to pressurize its propellant tanks, as reaction mass.<ref name=Pressurant2015>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> MESSENGER continued studying Mercury during its decay period.<ref name="Wu 2015"/> The spacecraft crashed onto the surface of Mercury on April 30, 2015, at 3:26 p.m. EDT (19:26 GMT), at a velocity of Template:Convert, probably creating a crater in the planet's surface approximately Template:Convert wide.<ref name='Bang'/><ref name="space.com.end"/> The spacecraft was estimated to have impacted at 54.4° N, 149.9° W on Suisei Planitia, near the crater Janáček.<ref>Template:Cite news</ref> The crash occurred at a place not visible from Earth at the time, and thus was not detected by any observers or instruments. NASA confirmed the end of the MESSENGER mission at 3:40 p.m. EDT (19:40 GMT) after NASA's Deep Space Network did not detect the spacecraft's reemergence from behind Mercury.<ref name="space.com.end">Template:Cite news</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web
}}</ref>
See alsoEdit
- BepiColombo, a European-Japanese mission to Mercury which was launched on October 19, 2018, and will enter orbit in November 2026
- Exploration of Mercury
- Mariner program
- Stamatios Krimigis, a NASA physicist and key contributor to the mission
ReferencesEdit
External linksEdit
- JHUAPL homepage – official site at Johns Hopkins University Applied Physics Laboratory
- MESSENGER Mission Page Template:Webarchive – official information regarding the mission on the NASA website
- MESSENGER Mission Profile by NASA's Solar System Exploration
- Mercury Flyby 1 Visualization Tool and Mercury Flyby 1 Actuals – comparison between simulated views of Mercury to the images actually acquired by MESSENGER during flyby 1
- Mercury Flyby 2 Visualization Tool and Mercury Flyby 2 Actuals – comparison between simulated views of Mercury to the images actually acquired by MESSENGER during flyby 2
- MESSENGER Image Gallery
- NSSDC Master Catalog entry
- Video from MESSENGER as it departs Earth
- Mercury data collected by both Mariner 10 and MESSENGER
- NASA Solar System 2015-04-27 MESSENGER at Mercury Images of the Mission
Template:Planetary Missions Program Office Template:Mercury spacecraft Template:Venus spacecraft Template:Satellite and spacecraft instruments Template:Solar System probes Template:NASA navbox Template:Orbital launches in 2004 Template:2011 in space Template:2015 in space