Canonical transformation

Revision as of 14:23, 26 May 2025 by imported>OAbot (Open access bot: url-access updated in citation with #oabot.)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates Template:Math that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations (a useful method for calculating conserved quantities) and Liouville's theorem (itself the basis for classical statistical mechanics).

Since Lagrangian mechanics is based on generalized coordinates, transformations of the coordinates Template:Math do not affect the form of Lagrange's equations and, hence, do not affect the form of Hamilton's equations if the momentum is simultaneously changed by a Legendre transformation into <math> P_i = \frac{ \partial L }{ \partial \dot{Q}_i }\ ,</math> where <math>\left\{\ (P_1 , Q_1),\ (P_2, Q_2),\ (P_3, Q_3),\ \ldots\ \right\} </math> are the new co‑ordinates, grouped in canonical conjugate pairs of momenta <math>P_i </math> and corresponding positions <math>Q_i,</math> for <math>i = 1, 2, \ldots\ N,</math> with <math>N </math> being the number of degrees of freedom in both co‑ordinate systems.

Therefore, coordinate transformations (also called point transformations) are a type of canonical transformation. However, the class of canonical transformations is much broader, since the old generalized coordinates, momenta and even time may be combined to form the new generalized coordinates and momenta. Canonical transformations that do not include the time explicitly are called restricted canonical transformations (many textbooks consider only this type).

Modern mathematical descriptions of canonical transformations are considered under the broader topic of symplectomorphism which covers the subject with advanced mathematical prerequisites such as cotangent bundles, exterior derivatives and symplectic manifolds.

NotationEdit

Boldface variables such as Template:Math represent a list of Template:Mvar generalized coordinates that need not transform like a vector under rotation and similarly Template:Math represents the corresponding generalized momentum, e.g., <math display="block">\begin{align} \mathbf{q} &\equiv \left (q_{1}, q_{2}, \ldots, q_{N-1}, q_{N} \right )\\ \mathbf{p} &\equiv \left (p_{1}, p_{2}, \ldots, p_{N-1}, p_{N} \right ). \end{align}</math>

A dot over a variable or list signifies the time derivative, e.g., <math>\dot{\mathbf{q}} \equiv \frac{d\mathbf{q}}{dt}</math>and the equalities are read to be satisfied for all coordinates, for example:<math>\dot{\mathbf{p}} = -\frac{\partial f}{\partial \mathbf{q}}\quad \Longleftrightarrow \quad \dotTemplate:P i = -\frac{\partial f}{\partial {q_i}} \quad (i = 1,\dots,N). </math>

The dot product notation between two lists of the same number of coordinates is a shorthand for the sum of the products of corresponding components, e.g., <math>\mathbf{p} \cdot \mathbf{q} \equiv \sum_{k=1}^{N} p_{k} q_{k}.</math>

The dot product (also known as an "inner product") maps the two coordinate lists into one variable representing a single numerical value. The coordinates after transformation are similarly labelled with Template:Math for transformed generalized coordinates and Template:Math for transformed generalized momentum.

Conditions for restricted canonical transformationEdit

Restricted canonical transformations are coordinate transformations where transformed coordinates Template:Math and Template:Math do not have explicit time dependence, i.e., <math display="inline">\mathbf Q=\mathbf Q(\mathbf q,\mathbf p)</math> and <math display="inline">\mathbf P=\mathbf P(\mathbf q,\mathbf p) </math>. The functional form of Hamilton's equations is

<math display="block">\begin{align} \dot{\mathbf{p}} &= -\frac{\partial H}{\partial \mathbf{q}} \,, & \dot{\mathbf{q}} &= \frac{\partial H}{\partial \mathbf{p}} \end{align}</math>

In general, a transformation Template:Math does not preserve the form of Hamilton's equations but in the absence of time dependence in transformation, some simplifications are possible. Following the formal definition for a canonical transformation, it can be shown that for this type of transformation, the new Hamiltonian (sometimes called the Kamiltonian<ref>Template:Harvnb</ref>) can be expressed as:

<math display="block">K(\mathbf Q, \mathbf P, t)= H(q(\mathbf Q,\mathbf P),p(\mathbf Q,\mathbf P),t) + \frac{\partial G}{\partial t}(t)</math>

where it differs by a partial time derivative of a function known as a generator, which reduces to being only a function of time for restricted canonical transformations.

In addition to leaving the form of the Hamiltonian unchanged, it is also permits the use of the unchanged Hamiltonian in the Hamilton's equations of motion due to the above form as:

<math display="block">\begin{alignat}{3} \dot{\mathbf{P}} &= -\frac{\partial K}{\partial \mathbf{Q}} &&= -\left(\frac{\partial H}{\partial \mathbf{Q}}\right)_{\mathbf Q,\mathbf P,t}\\ \dot{\mathbf{Q}} &= \,\,\,\, \frac{\partial K}{\partial \mathbf{P}} &&= \,\,\,\, \, \left(\frac{\partial H}{\partial \mathbf{P}}\right)_{\mathbf Q,\mathbf P ,t}\\ \end{alignat}</math>

Although canonical transformations refers to a more general set of transformations of phase space corresponding with less permissive transformations of the Hamiltonian, it provides simpler conditions to obtain results that can be further generalized. All of the following conditions, with the exception of bilinear invariance condition, can be generalized for canonical transformations, including time dependance.

Indirect conditionsEdit

Since restricted transformations have no explicit time dependence (by definition), the time derivative of a new generalized coordinate Template:Math is

<math display="block">\begin{align} \dot{Q}_{m} &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} \\ &= \frac{\partial Q_{m}}{\partial \mathbf{q}} \cdot \frac{\partial H}{\partial \mathbf{p}} - \frac{\partial Q_{m}}{\partial \mathbf{p}} \cdot \frac{\partial H}{\partial \mathbf{q}} \\ &= \lbrace Q_m , H \rbrace \end{align}</math>
where Template:Math is the Poisson bracket.


Similarly for the identity for the conjugate momentum, Pm using the form of the "Kamiltonian" it follows that:

<math display="block">\begin{align} \frac{\partial K(\mathbf{Q}, \mathbf{P}, t)}{\partial P_{m}} &= \frac{\partial K(\mathbf{Q}(\mathbf{q}, \mathbf{p}), \mathbf{P}(\mathbf{q}, \mathbf{p}), t)}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}}

+ \frac{\partial K(\mathbf{Q}(\mathbf{q}, \mathbf{p}), \mathbf{P}(\mathbf{q}, \mathbf{p}), t)}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}} \\[1ex]

&= \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}}

+ \frac{\partial H(\mathbf{q}, \mathbf{p}, t)}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}} \\[1ex]

&= \frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial P_{m}}

+ \frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial \mathbf{p}}{\partial P_{m}}

\end{align}</math>


Due to the form of the Hamiltonian equations of motion,

<math display="block">\begin{align} \dot{\mathbf{P}} &= -\frac{\partial K}{\partial \mathbf{Q}}\\ \dot{\mathbf{Q}} &= \,\,\,\, \frac{\partial K}{\partial \mathbf{P}} \end{align}</math>

if the transformation is canonical, the two derived results must be equal, resulting in the equations:

<math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= -\left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \end{align}</math>

The analogous argument for the generalized momenta Pm leads to two other sets of equations:

<math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p}} &= -\left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P}} \end{align}</math>

These are the indirect conditions to check whether a given transformation is canonical.

Symplectic conditionEdit

Sometimes the Hamiltonian relations are represented as:

<math display="block">\dot{\eta}= J \nabla_\eta H </math>

Where <math display="inline">J := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix},</math>

and <math display="inline">\mathbf{\eta} =

 \begin{bmatrix}
   q_1\\
   \vdots \\
   q_n\\
   p_1\\
   \vdots\\
   p_n\\    
 \end{bmatrix}

</math>. Similarly, let <math display="inline">\mathbf{\varepsilon} =

 \begin{bmatrix}
   Q_1\\
   \vdots \\
   Q_n\\
   P_1\\
   \vdots\\
   P_n\\    
 \end{bmatrix}

</math>.


From the relation of partial derivatives, converting the <math>\dot{\eta}= J \nabla_\eta H </math> relation in terms of partial derivatives with new variables gives <math>\dot{\eta}=J ( M^T \nabla_\varepsilon H) </math> where <math display="inline">M := \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math>. Similarly for <math display="inline">\dot{\varepsilon} </math>,

<math display="block">\dot{\varepsilon}=M\dot{\eta} =M J M^T \nabla_\varepsilon H </math>


Due to form of the Hamiltonian equations for <math display="inline">\dot{\varepsilon} </math>,

<math display="block">\dot{\varepsilon}=J \nabla_\varepsilon K = J \nabla_\varepsilon H </math>


where <math display="inline">\nabla_\varepsilon K = \nabla_\varepsilon H </math> can be used due to the form of Kamiltonian. Equating the two equations gives the symplectic condition as:<ref> Template:Harvnb</ref>

<math display="block">M J M^T = J </math>

The left hand side of the above is called the Poisson matrix of <math>\varepsilon </math>, denoted as <math display="inline">\mathcal P(\varepsilon) = MJM^T </math>. Similarly, a Lagrange matrix of <math>\eta </math> can be constructed as <math display="inline">\mathcal L(\eta) = M^TJM </math>.<ref name=":0">Template:Harvnb</ref> It can be shown that the symplectic condition is also equivalent to <math display="inline">M^T J M = J </math> by using the <math display="inline">J^{-1}=-J </math> property. The set of all matrices <math display="inline">M </math> which satisfy symplectic conditions form a symplectic group. The symplectic conditions are equivalent with indirect conditions as they both lead to the equation <math display="inline">\dot{\varepsilon}= J \nabla_\varepsilon H </math>, which is used in both of the derivations.

Invariance of the Poisson bracketEdit

The Poisson bracket which is defined as:<math display="block">\{u, v\}_\eta := \sum_{i=1}^{n} \left( \frac{\partial u}{\partial q_{i}} \frac{\partial v}{\partial p_{i}} - \frac{\partial u}{\partial p_i} \frac{\partial v}{\partial q_i}\right)</math>can be represented in matrix form as:

<math display="block">\{u, v\}_\eta := (\nabla_\eta u)^T J (\nabla_\eta v)</math>

Hence using partial derivative relations and symplectic condition gives:<ref>Template:Harvnb</ref><math display="block">\{u, v\}_\eta = (\nabla_\eta u)^T J (\nabla_\eta v) = (M^T \nabla_\varepsilon u)^T J (M^T \nabla_\varepsilon v) = (\nabla_\varepsilon u)^T M J M^T (\nabla_\varepsilon v) = (\nabla_\varepsilon u)^T J (\nabla_\varepsilon v) = \{u, v\}_\varepsilon</math>

The symplectic condition can also be recovered by taking <math display="inline">u=\varepsilon_i </math> and <math display="inline">v=\varepsilon_j </math> which shows that <math display="inline">(M J M^T )_{ij}= J_{i j} </math>. Thus these conditions are equivalent to symplectic conditions. Furthermore, it can be seen that <math display="inline">\mathcal P_{ij}(\varepsilon) = \{ \varepsilon_i,\varepsilon_j\}_\eta =(M J M^T )_{ij} </math>, which is also the result of explicitly calculating the matrix element by expanding it.<ref name=":0" />

Invariance of the Lagrange bracketEdit

The Lagrange bracket which is defined as:

<math display="block"> [ u, v ]_{\eta}  := \sum_{i=1}^n \left(\frac{\partial q_i}{\partial u} \frac{\partial p_i}{\partial v} - \frac{\partial p_i}{\partial u} \frac{\partial q_i}{\partial v } \right) </math>

can be represented in matrix form as:

<math display="block"> [ u, v ]_{\eta}  := \left(\frac {\partial \eta}{\partial u}\right)^T J \left(\frac {\partial \eta}{\partial v}\right) </math>

Using similar derivation, gives:

<math display="block">[u, v]_\varepsilon = (\partial_u \varepsilon )^T \,J\, (\partial_v \varepsilon) = (M \, \partial_u \eta )^T \,J \, ( M \,\partial_v \eta) = (\partial_u \eta )^T\, M^TJ M\, (\partial_v \eta) = (\partial_u \eta )^T\, J\,(\partial_v \eta) = [u, v]_\eta</math>

The symplectic condition can also be recovered by taking <math display="inline">u=\eta_i </math> and <math display="inline">v=\eta_j </math> which shows that <math display="inline">(M^T J M )_{ij}= J_{i j} </math>. Thus these conditions are equivalent to symplectic conditions. Furthermore, it can be seen that <math display="inline">\mathcal L_{ij}(\eta) =[\eta_i,\eta_j]_\varepsilon=(M^T J M )_{ij} </math>, which is also the result of explicitly calculating the matrix element by expanding it.<ref name=":0" />

Bilinear invariance conditionsEdit

These set of conditions only apply to restricted canonical transformations or canonical transformations that are independent of time variable.

Consider arbitrary variations of two kinds, in a single pair of generalized coordinate and the corresponding momentum:<ref>Template:Harvnb</ref>

<math display="inline"> d \varepsilon=( dq_1, dp_{1},0,0,\ldots),\quad\delta \varepsilon=(\delta q_{1},\delta p_{1},0,0,\ldots). </math>


The area of the infinitesimal parallelogram is given by:

<math display="inline"> \delta a(12)=d q_{1}\delta p_{1}-\delta q_{1} d p_{1}={(\delta\varepsilon)}^T\,J \, d \varepsilon. </math>


It follows from the <math display="inline">M^T J M = J </math> symplectic condition that the infinitesimal area is conserved under canonical transformation:

<math display="inline"> \delta a(12)={(\delta\varepsilon)}^T\,J \,d \varepsilon={(M\delta\eta)}^T\,J \,Md \eta= {(\delta\eta)}^T\,M^TJM \,d \eta = {(\delta\eta)}^T\,J \,d\eta = \delta A(12). </math>

Note that the new coordinates need not be completely oriented in one coordinate momentum plane.

Hence, the condition is more generally stated as an invariance of the form <math display="inline"> {(d\varepsilon)}^T\,J \, \delta \varepsilon </math> under canonical transformation, expanded as:

<math display="block"> \sum \delta q \cdot dp - \delta p \cdot dq = \sum \delta Q \cdot dP - \delta P \cdot dQ </math>

If the above is obeyed for any arbitrary variations, it would be only possible if the indirect conditions are met.<ref>Template:Harvnb</ref><ref>Template:Harvnb</ref> The form of the equation, <math display="inline"> {v}^T\,J \, w </math> is also known as a symplectic product of the vectors <math display="inline"> {v} </math> and <math display="inline"> w </math> and the bilinear invariance condition can be stated as a local conservation of the symplectic product.<ref>Template:Harvnb</ref>

Liouville's theoremEdit

The indirect conditions allow us to prove Liouville's theorem, which states that the volume in phase space is conserved under canonical transformations, i.e.,

<math display="block"> \int \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p} = \int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P}</math>

By calculus, the latter integral must equal the former times the determinant of Jacobian Template:Mvar

<math display="block">\int \mathrm{d}\mathbf{Q}\, \mathrm{d}\mathbf{P} = \int \det (M) \, \mathrm{d}\mathbf{q}\, \mathrm{d}\mathbf{p}</math> Where <math display="inline">M := \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math>


Exploiting the "division" property of Jacobians yields<math display="block"> M \equiv \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{P})} \left/ \frac{\partial (\mathbf{q}, \mathbf{p})}{\partial (\mathbf{q}, \mathbf{P})} \right. </math>

Eliminating the repeated variables gives<math display="block">M \equiv \frac{\partial (\mathbf{Q})}{\partial (\mathbf{q})} \left/ \frac{\partial (\mathbf{p})}{\partial (\mathbf{P})} \right.</math>

Application of the indirect conditions above yields Template:Math.<ref>Template:Harvnb</ref>

Generating function approachEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} To guarantee a valid transformation between Template:Math and Template:Math, we may resort to a direct generating function approach. Both sets of variables must obey Hamilton's principle. That is the action integral over the Lagrangians <math>\mathcal{L}_{qp}=\mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t)</math> and <math>\mathcal{L}_{QP}=\mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t)</math>, obtained from the respective Hamiltonian via an "inverse" Legendre transformation, must be stationary in both cases (so that one can use the Euler–Lagrange equations to arrive at Hamiltonian equations of motion of the designated form; as it is shown for example here):

<math display="block">\begin{align} \delta \int_{t_{1}}^{t_{2}} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] dt &= 0 \\ \delta \int_{t_{1}}^{t_{2}} \left[ \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) \right] dt &= 0 \end{align}</math>

One way for both variational integral equalities to be satisfied is to have

<math display="block">\lambda \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] = \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{dG}{dt} </math>

Lagrangians are not unique: one can always multiply by a constant Template:Mvar and add a total time derivative Template:Math and yield the same equations of motion (as discussed on Wikibooks). In general, the scaling factor Template:Mvar is set equal to one; canonical transformations for which Template:Math are called extended canonical transformations. Template:Math is kept, otherwise the problem would be rendered trivial and there would be not much freedom for the new canonical variables to differ from the old ones.

Here Template:Mvar is a generating function of one old canonical coordinate (Template:Math or Template:Math), one new canonical coordinate (Template:Math or Template:Math) and (possibly) the time Template:Mvar. Thus, there are four basic types of generating functions (although mixtures of these four types can exist), depending on the choice of variables. As will be shown below, the generating function will define a transformation from old to new canonical coordinates, and any such transformation Template:Math is guaranteed to be canonical.

The various generating functions and its properties tabulated below is discussed in detail:

Properties of four basic canonical transformations<ref>Template:Harvnb</ref>
Generating function Generating function derivatives Transformed Hamiltonian Trivial cases
<math>G = G_1(q,Q,t) </math> <math>p = \frac{\partial G_1}{\partial q} </math> <math>P = - \frac{\partial G_1}{\partial Q} </math> <math display="inline">K = H + \frac{\partial G}{\partial t} </math> <math>G_1 = qQ </math> <math>Q = p </math> <math>P = -q </math>
<math>G = G_2(q,P,t) - QP </math> <math>p = \frac{\partial G_2}{\partial q} </math> <math>Q = \frac{\partial G_2}{\partial P} </math> <math>G_2 = qP </math> <math>Q = q </math> <math>P = p </math>
<math>G = G_3(p,Q,t) + qp </math> <math>q = -\frac{\partial G_3}{\partial p} </math> <math>P = -\frac{\partial G_3}{\partial Q} </math> <math>G_3 = pQ </math> <math>Q = -q </math> <math>P = -p </math>
<math>G = G_4(p,P,t) + qp - QP </math> <math>q = -\frac{\partial G_4}{\partial p} </math> <math>Q = \frac{\partial G_4}{\partial P} </math> <math>G_4 = pP </math> <math>Q = p </math> <math>P = -q </math>

Type 1 generating functionEdit

The type 1 generating function Template:Math depends only on the old and new generalized coordinates <math display="inline">G \equiv G_{1}(\mathbf{q}, \mathbf{Q}, t)</math>. To derive the implicit transformation, we expand the defining equation above <math display="block"> \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) = \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{\partial G_{1}}{\partial t} + \frac{\partial G_{1}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial G_{1}}{\partial \mathbf{Q}} \cdot \dot{\mathbf{Q}}</math>

Since the new and old coordinates are each independent, the following Template:Math equations must hold

<math display="block">\begin{align} \mathbf{p} &= \frac{\partial G_{1}}{\partial \mathbf{q}} \\ \mathbf{P} &= -\frac{\partial G_{1}}{\partial \mathbf{Q}} \\ K &= H + \frac{\partial G_{1}}{\partial t} \end{align}</math>

These equations define the transformation Template:Math as follows: The first set of Template:Mvar equations <math display="inline">\ \mathbf{p} = \frac{\ \partial G_{1}\ }{ \partial \mathbf{q} }\ </math> define relations between the new generalized coordinates Template:Math and the old canonical coordinates Template:Math. Ideally, one can invert these relations to obtain formulae for each Template:Math as a function of the old canonical coordinates. Substitution of these formulae for the Template:Math coordinates into the second set of Template:Mvar equations <math display="inline">\mathbf{P} = -\frac{\partial G_{1}}{\partial \mathbf{Q}}</math> yields analogous formulae for the new generalized momenta Template:Math in terms of the old canonical coordinates Template:Math. We then invert both sets of formulae to obtain the old canonical coordinates Template:Math as functions of the new canonical coordinates Template:Math. Substitution of the inverted formulae into the final equation <math display="inline">K = H + \frac{\partial G_{1}}{\partial t}</math> yields a formula for Template:Mvar as a function of the new canonical coordinates Template:Math.

In practice, this procedure is easier than it sounds, because the generating function is usually simple. For example, let <math display="inline">G_{1} \equiv \mathbf{q} \cdot \mathbf{Q}</math>. This results in swapping the generalized coordinates for the momenta and vice versa

<math display="block">\begin{align} \mathbf{p} &= \frac{\partial G_{1}}{\partial \mathbf{q}} = \mathbf{Q} \\ \mathbf{P} &= -\frac{\partial G_{1}}{\partial \mathbf{Q}} = -\mathbf{q} \end{align}</math>

and Template:Math. This example illustrates how independent the coordinates and momenta are in the Hamiltonian formulation; they are equivalent variables.

Type 2 generating functionEdit

The type 2 generating function <math>G_{2}(\mathbf{q}, \mathbf{P}, t)</math> depends only on the old generalized coordinates and the new generalized momenta <math display="inline">G \equiv G_{2}(\mathbf{q}, \mathbf{P}, t)-\mathbf{Q} \cdot \mathbf{P}</math> where the <math>-\mathbf{Q} \cdot \mathbf{P}</math> terms represent a Legendre transformation to change the right-hand side of the equation below. To derive the implicit transformation, we expand the defining equation above

<math display="block"> \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) = -\mathbf{Q} \cdot \dot{\mathbf{P}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{\partial G_{2}}{\partial t} + \frac{\partial G_{2}}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} + \frac{\partial G_{2}}{\partial \mathbf{P}} \cdot \dot{\mathbf{P}}</math>

Since the old coordinates and new momenta are each independent, the following Template:Math equations must hold

<math display="block">\begin{align} \mathbf{p} &= \frac{\partial G_{2}}{\partial \mathbf{q}} \\ \mathbf{Q} &= \frac{\partial G_{2}}{\partial \mathbf{P}} \\ K &= H + \frac{\partial G_{2}}{\partial t} \end{align}</math>

These equations define the transformation Template:Math as follows: The first set of Template:Mvar equations <math display="inline">\mathbf{p} = \frac{\partial G_{2}}{\partial \mathbf{q}}</math> define relations between the new generalized momenta Template:Math and the old canonical coordinates Template:Math. Ideally, one can invert these relations to obtain formulae for each Template:Math as a function of the old canonical coordinates. Substitution of these formulae for the Template:Math coordinates into the second set of Template:Mvar equations <math display="inline">\mathbf{Q} = \frac{\partial G_{2}}{\partial \mathbf{P}}</math> yields analogous formulae for the new generalized coordinates Template:Math in terms of the old canonical coordinates Template:Math. We then invert both sets of formulae to obtain the old canonical coordinates Template:Math as functions of the new canonical coordinates Template:Math. Substitution of the inverted formulae into the final equation <math display="inline">K = H + \frac{\partial G_{2}}{\partial t}</math> yields a formula for Template:Mvar as a function of the new canonical coordinates Template:Math.

In practice, this procedure is easier than it sounds, because the generating function is usually simple. For example, let <math display="inline">G_{2} \equiv \mathbf{g}(\mathbf{q}; t) \cdot \mathbf{P}</math> where Template:Math is a set of Template:Mvar functions. This results in a point transformation of the generalized coordinates <math display="inline">\mathbf{Q} = \frac{\partial G_{2}}{\partial \mathbf{P}} = \mathbf{g}(\mathbf{q}; t)</math>.

Type 3 generating functionEdit

The type 3 generating function <math>G_{3}(\mathbf{p}, \mathbf{Q}, t)</math> depends only on the old generalized momenta and the new generalized coordinates <math display="inline">G \equiv G_{3}(\mathbf{p}, \mathbf{Q}, t)+ \mathbf{q} \cdot \mathbf{p}</math> where the <math>\mathbf{q} \cdot \mathbf{p}</math> terms represent a Legendre transformation to change the left-hand side of the equation below. To derive the implicit transformation, we expand the defining equation above <math display="block">-\mathbf{q} \cdot \dot{\mathbf{p}} - H(\mathbf{q}, \mathbf{p}, t) = \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{\partial G_{3}}{\partial t} + \frac{\partial G_{3}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} + \frac{\partial G_{3}}{\partial \mathbf{Q}} \cdot \dot{\mathbf{Q}}</math>

Since the new and old coordinates are each independent, the following Template:Math equations must hold

<math display="block">\begin{align} \mathbf{q} &= -\frac{\partial G_{3}}{\partial \mathbf{p}} \\ \mathbf{P} &= -\frac{\partial G_{3}}{\partial \mathbf{Q}} \\ K &= H + \frac{\partial G_{3}}{\partial t} \end{align}</math>

These equations define the transformation Template:Math as follows: The first set of Template:Mvar equations <math display="inline"> \mathbf{q} = -\frac{\partial G_{3}}{\partial \mathbf{p}}</math> define relations between the new generalized coordinates Template:Math and the old canonical coordinates Template:Math. Ideally, one can invert these relations to obtain formulae for each Template:Math as a function of the old canonical coordinates. Substitution of these formulae for the Template:Math coordinates into the second set of Template:Mvar equations <math display="inline">\mathbf{P} = -\frac{\partial G_{3}}{\partial \mathbf{Q}}</math> yields analogous formulae for the new generalized momenta Template:Math in terms of the old canonical coordinates Template:Math. We then invert both sets of formulae to obtain the old canonical coordinates Template:Math as functions of the new canonical coordinates Template:Math. Substitution of the inverted formulae into the final equation <math display="inline">K = H + \frac{\partial G_{3}}{\partial t}</math> yields a formula for Template:Mvar as a function of the new canonical coordinates Template:Math.

In practice, this procedure is easier than it sounds, because the generating function is usually simple.

Type 4 generating functionEdit

The type 4 generating function <math>G_{4}(\mathbf{p}, \mathbf{P}, t)</math> depends only on the old and new generalized momenta <math display="inline">G \equiv G_{4}(\mathbf{p}, \mathbf{P}, t) +\mathbf{q} \cdot \mathbf{p} - \mathbf{Q} \cdot \mathbf{P} </math> where the <math>\mathbf{q} \cdot \mathbf{p} - \mathbf{Q} \cdot \mathbf{P}</math> terms represent a Legendre transformation to change both sides of the equation below. To derive the implicit transformation, we expand the defining equation above

<math display="block">-\mathbf{q} \cdot \dot{\mathbf{p}} - H(\mathbf{q}, \mathbf{p}, t) = -\mathbf{Q} \cdot \dot{\mathbf{P}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{\partial G_{4}}{\partial t} + \frac{\partial G_{4}}{\partial \mathbf{p}} \cdot \dot{\mathbf{p}} + \frac{\partial G_{4}}{\partial \mathbf{P}} \cdot \dot{\mathbf{P}} </math>

Since the new and old coordinates are each independent, the following Template:Math equations must hold

<math display="block">\begin{align} \mathbf{q} &= -\frac{\partial G_{4}}{\partial \mathbf{p}} \\ \mathbf{Q} &= \frac{\partial G_{4}}{\partial \mathbf{P}} \\ K &= H + \frac{\partial G_{4}}{\partial t} \end{align}</math>

These equations define the transformation Template:Math as follows: The first set of Template:Mvar equations <math display="inline">\mathbf{q} = -\frac{\partial G_{4}}{\partial \mathbf{p}}</math> define relations between the new generalized momenta Template:Math and the old canonical coordinates Template:Math. Ideally, one can invert these relations to obtain formulae for each Template:Math as a function of the old canonical coordinates. Substitution of these formulae for the Template:Math coordinates into the second set of Template:Mvar equations <math display="inline">\mathbf{Q} = \frac{\partial G_{4}}{\partial \mathbf{P}} </math> yields analogous formulae for the new generalized coordinates Template:Math in terms of the old canonical coordinates Template:Math. We then invert both sets of formulae to obtain the old canonical coordinates Template:Math as functions of the new canonical coordinates Template:Math. Substitution of the inverted formulae into the final equation <math display="inline">K = H + \frac{\partial G_{4}}{\partial t}</math> yields a formula for Template:Mvar as a function of the new canonical coordinates Template:Math.

Limitations on the four types of generating functionsEdit

Considering <math>G_{2}(\mathbf{q}, \mathbf{P}, t)</math> as an example, using generating function of second kind: <math display="inline">{p}_i = \frac{\partial G_{2}}{\partial {q}_i}

</math> and <math display="inline">{Q}_i = \frac{\partial G_{2}}{\partial {P}_i} </math>, the first set of equations consisting of variables <math display="inline">\mathbf{p} </math>, <math display="inline">\mathbf{q} </math> and <math display="inline">\mathbf{P} </math> has to be inverted to get <math display="inline">\mathbf{P}(\mathbf q, \mathbf p) </math>. This process is possible when the matrix defined by <math display="inline">a_{ij}=\frac{\partial {p}_i(\mathbf q,\mathbf P)}{\partial P_j} </math> is non-singular using the inverse function theorem, and can be restated as the following relation.<ref>Template:Harvnb</ref>

<math display="block">\left|\begin{array}{l l l}{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{1}\partial q_{1}}}}}&Template:\cdots&{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{1}\partial q_{n}}}}}\\ {\quad \vdots} & {\ddots}&{\quad \vdots}\\{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{n}\partial q_{1}}}}}&Template:\cdots&{{\displaystyle{\frac{\partial^{2}G_{2}}{\partial P_{n}\partial q_{n}}}}}\end{array}\right|{\neq0}</math>

Hence, restrictions are placed on generating functions to have the matrices: <math display="inline">\left[\frac{\partial^2 G_1}{\partial Q_j\partial q_i} \right] </math>, <math display="inline">\left[\frac{\partial^2 G_2}{\partial P_j\partial q_i} \right] </math>, <math display="inline">\left[\frac{\partial^2 G_3}{\partial p_j\partial Q_i} \right] </math> and <math display="inline">\left[\frac{\partial^2 G_4}{\partial p_j\partial P_i} \right] </math>, being non-singular.<ref>Template:Harvnb</ref><ref>Template:Harvnb</ref> These conditions also correspond to local invertibility of the coordinates. From these restrictions, it can be stated that type 1 and type 4 generating functions always have a non-singular <math display="inline">\left[\frac{\partial Q_i(\mathbf q,\mathbf p)}{\partial p_j} \right] </math> matrix whereas type 2 and type 3 generating functions always have a non-singular <math display="inline">\left[\frac{\partial P_i(\mathbf q,\mathbf p)}{\partial p_j} \right] </math> matrix. Hence, the canonical transformations resulting from these four generating functions alone are not completely general.<ref>Template:Harvnb</ref>

Generalized use of generating functionsEdit

In other words, since Template:Math and Template:Math are each Template:Math independent functions, it follows that to have generating function of the form <math display="inline">G_{1}(\mathbf{q}, \mathbf{Q}, t) </math> and <math>G_{4}(\mathbf{p}, \mathbf{P}, t)</math> or <math>G_{2}(\mathbf{q}, \mathbf{P}, t)</math> and <math>G_{3}(\mathbf{p}, \mathbf{Q}, t)</math>, the corresponding Jacobian matrices <math display="inline">\left[\frac{\partial Q_i}{\partial p_j} \right] </math> and <math display="inline">\left[\frac{\partial P_i}{\partial p_j} \right] </math> are restricted to be non singular, ensuring that the generating function is a function of Template:Math independent variables. However, as a feature of canonical transformations, it is always possible to choose Template:Math such independent functions from sets Template:Math or Template:Math, to form a generating function representation of canonical transformations, including the time variable. Hence, it can be proven that every finite canonical transformation can be given as a closed but implicit form that is a variant of the given four simple forms.<ref>Template:Harvnb</ref>

Canonical transformation conditionsEdit

Canonical transformation relationsEdit

From: <math>K = H + \frac{\partial G}{\partial t} </math>, calculate <math display="inline">\frac{\partial (K-H)}{\partial P} </math>:

<math display="block">\begin{align} \left( \frac{\partial (K-H)}{\partial P}\right)_{Q,P,t} &= \frac{\partial K}{\partial P} - \frac{\partial H}{\partial p}\frac{\partial p}{\partial P} - \frac{\partial H}{\partial q}\frac{\partial q}{\partial P} - \frac{\partial H}{\partial t}\left( \frac{\partial t}{\partial P}\right)_{Q,P,t} \\ &= \dot{Q} + \dot{p} \frac{\partial q}{\partial P} - \dot{q}\frac{\partial p}{\partial P} \\ &= \frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial q} \cdot \dot{q} + \frac{\partial Q}{\partial p} \cdot \dot{p} + \dot{p} \frac{\partial q}{\partial P} - \dot{q}\frac{\partial p}{\partial P} \\ &=\dot{q}\left(\frac{\partial Q}{\partial q} - \frac{\partial p}{\partial P}\right)+\dot{p}\left(\frac{\partial q}{\partial P} +\frac{\partial Q}{\partial p} \right) + \frac{\partial Q}{\partial t} \end{align}</math> Since the left hand side is <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac \partial {\partial P}\left( \frac{\partial G}{\partial t} \right) \bigg |_{Q,P,t} </math> which is independent of dynamics of the particles, equating coefficients of <math display="inline">\dot q </math> and <math display="inline">\dot p </math> to zero, canonical transformation rules are obtained. This step is equivalent to equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math>.

Since the left hand side is <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac \partial {\partial P}\left( \frac{\partial G}{\partial t} \right) \bigg |_{Q,P,t} </math> which is independent of dynamics of the particles, equating coefficients of <math display="inline">\dot q </math> and <math display="inline">\dot p </math> to zero, canonical transformation rules are obtained. This step is equivalent to equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math>.

Similarly:

<math display="block">\begin{align} \left(\frac{\partial (K-H)}{\partial Q}\right)_{Q,P,t} &= \frac{\partial K}{\partial Q} - \frac{\partial H}{\partial p}\frac{\partial p}{\partial Q} - \frac{\partial H}{\partial q}\frac{\partial q}{\partial Q} - \frac{\partial H}{\partial t}\left(\frac{\partial t}{\partial Q}\right)_{Q,P,t} \\ &= -\dot{P} + \dot{p} \frac{\partial q}{\partial Q} - \dot{q}\frac{\partial p}{\partial Q} \\ &= -\frac{\partial P}{\partial t} -\frac{\partial P}{\partial q} \cdot \dot{q} - \frac{\partial P}{\partial p} \cdot \dot{p} + \dot{p} \frac{\partial q}{\partial Q} - \dot{q}\frac{\partial p}{\partial Q} \\ &=-\left(\dot{q}\left(\frac{\partial P}{\partial q} + \frac{\partial p}{\partial Q}\right)+\dot{p}\left(\frac{\partial P}{\partial p} -\frac{\partial q}{\partial Q} \right) + \frac{\partial P}{\partial t} \right) \end{align} </math>

Similarly the canonical transformation rules are obtained by equating the left hand side as <math display="inline">\frac{\partial (K-H)}{\partial Q} = - \frac{\partial P}{\partial t} </math>.

The above two relations can be combined in matrix form as: <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> (which will also retain same form for extended canonical transformation) where the result <math display="inline">\frac{\partial G}{\partial t} = K-H </math>, has been used. The canonical transformation relations are hence said to be equivalent to <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> in this context.


The canonical transformation relations can now be restated to include time dependance:

<math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= - \left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align} </math>

<math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= - \left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math>

Since <math display="inline">\frac{\partial (K-H)}{\partial P} = \frac{\partial Q}{\partial t} </math> and <math display="inline">\frac{\partial (K-H)}{\partial Q} = - \frac{\partial P}{\partial t} </math>, if Template:Math and Template:Math do not explicitly depend on time, <math display="inline">K= H + \frac{\partial G}{\partial t}(t)</math> can be taken. The analysis of restricted canonical transformations is hence consistent with this generalization.

Symplectic conditionEdit

Applying transformation of co-ordinates formula for <math> \nabla_\eta H = M^T \nabla_\varepsilon H </math>, in Hamiltonian's equations gives:

<math display="block">\dot{\eta}=J\nabla_\eta H =J ( M^T \nabla_\varepsilon H) </math>

Similarly for <math display="inline">\dot{\varepsilon} </math>:

<math display="block">\dot{\varepsilon}=M\dot{\eta} + \frac{\partial \varepsilon}{\partial t} =M J M^T \nabla_\varepsilon H + \frac{\partial \varepsilon}{\partial t} </math>

or:

<math display="block">\dot{\varepsilon}=J \nabla_\varepsilon K = J \nabla_\varepsilon H + J \nabla_\varepsilon

\left( \frac{\partial G}{\partial t}\right)

</math>

Where the last terms of each equation cancel due to <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math> condition from canonical transformations. Hence leaving the symplectic relation: <math display="inline">M J M^T = J </math> which is also equivalent with the condition <math display="inline">M^T J M = J </math>. It follows from the above two equations that the symplectic condition implies the equation <math display="inline">J \left(\nabla_\varepsilon \frac{\partial G}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math>, from which the indirect conditions can be recovered. Thus, symplectic conditions and indirect conditions can be said to be equivalent in the context of using generating functions.

Invariance of the Poisson and Lagrange bracketsEdit

Since <math display="inline">\mathcal P_{ij}(\varepsilon) = \{ \varepsilon_i,\varepsilon_j\}_\eta =(M J M^T )_{ij} = J_{ij} </math> and <math display="inline">\mathcal L_{ij}(\eta) =[\eta_i,\eta_j]_\varepsilon=(M^T J M )_{ij} = J_{ij} </math> where the symplectic condition is used in the last equalities. Using <math display="inline">\{\varepsilon_i,\varepsilon_j\}_\varepsilon=[\eta_i,\eta_j]_\eta = J_{ij} </math>, the equalities <math display="inline">\{ \varepsilon_i,\varepsilon_j\}_\eta= \{ \varepsilon_i,\varepsilon_j\}_\varepsilon </math> and <math display="inline">[\eta_i,\eta_j]_\varepsilon= [\eta_i,\eta_j]_\eta </math> are obtained which imply the invariance of Poisson and Lagrange brackets.

Extended canonical transformationEdit

Canonical transformation relationsEdit

By solving for:

<math display="block">\lambda \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t) \right] = \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) + \frac{dG}{dt} </math>

with various forms of generating function, the relation between K and H goes as <math display="inline">\frac{\partial G}{\partial t} = K-\lambda H </math> instead, which also applies for <math display="inline">\lambda = 1 </math> case.

All results presented below can also be obtained by replacing <math display="inline">q \rightarrow \sqrt{\lambda}q </math>, <math display="inline">p \rightarrow \sqrt{\lambda}p </math> and <math display="inline">H \rightarrow {\lambda}H </math> from known solutions, since it retains the form of Hamilton's equations. The extended canonical transformations are hence said to be result of a canonical transformation (<math display="inline">\lambda = 1 </math>) and a trivial canonical transformation (<math display="inline">\lambda \neq 1 </math>) which has <math display="inline">M J M^T = \lambda J </math> (for the given example, <math display="inline">M = \sqrt{\lambda} I </math> which satisfies the condition).<ref>Template:Harvnb</ref>

Using same steps previously used in previous generalization, with <math display="inline">\frac{\partial G}{\partial t} = K-\lambda H </math> in the general case, and retaining the equation <math display="inline">J \left(\nabla_\varepsilon \frac{\partial g}{\partial t} \right) = \frac{\partial \varepsilon}{\partial t} </math>, extended canonical transformation partial differential relations are obtained as:

<math display="block">\begin{align} \left( \frac{\partial Q_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= -\lambda \left( \frac{\partial q_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial Q_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \lambda \left( \frac{\partial p_{n}}{\partial P_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math>

<math display="block">\begin{align} \left( \frac{\partial P_{m}}{\partial p_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= \lambda \left( \frac{\partial q_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \\ \left( \frac{\partial P_{m}}{\partial q_{n}}\right)_{\mathbf{q}, \mathbf{p},t} &= -\lambda \left( \frac{\partial p_{n}}{\partial Q_{m}}\right)_{\mathbf{Q}, \mathbf{P},t} \end{align}</math>

Symplectic conditionEdit

Following the same steps to derive the symplectic conditions, as:

<math display="block">\dot{\eta}=J\nabla_\eta H =J ( M^T \nabla_\varepsilon H) </math>

and

<math display="block">\dot{\varepsilon}=M\dot{\eta} + \frac{\partial \varepsilon}{\partial t} =M J M^T \nabla_\varepsilon H + \frac{\partial \varepsilon}{\partial t} </math> where using <math display="inline">\frac{\partial G}{\partial t} = K-\lambda H </math> instead gives:

<math display="block">\dot{\varepsilon}=J \nabla_\varepsilon K = \lambda J \nabla_\varepsilon H + J \nabla_\varepsilon

\left( \frac{\partial G}{\partial t}\right) 

</math>

The second part of each equation cancel. Hence the condition for extended canonical transformation instead becomes: <math display="inline">M J M^T = \lambda J </math>.<ref>Template:Harvnb</ref>

Poisson and Lagrange bracketsEdit

The Poisson brackets are changed as follows:

<math display="block">\{u, v\}_\eta = (\nabla_\eta u)^T J (\nabla_\eta v) = (M^T \nabla_\varepsilon u)^T J (M^T \nabla_\varepsilon v) = (\nabla_\varepsilon u)^T M J M^T (\nabla_\varepsilon v) = \lambda (\nabla_\varepsilon u)^T J (\nabla_\varepsilon v) = \lambda \{u, v\}_\varepsilon</math>

whereas, the Lagrange brackets are changed as:

<math display="block">[u, v]_\varepsilon = (\partial_u \varepsilon )^T \,J\, (\partial_v \varepsilon) = (M \, \partial_u \eta )^T \,J \, ( M \,\partial_v \eta) = (\partial_u \eta )^T\, M^TJ M\, (\partial_v \eta) = \lambda (\partial_u \eta )^T\, J\,(\partial_v \eta) = \lambda [u, v]_\eta</math>

Hence, the Poisson bracket scales by the inverse of <math display="inline">\lambda </math> whereas the Lagrange bracket scales by a factor of <math display="inline">\lambda </math>.<ref>Template:Harvnb-17</ref>

Infinitesimal canonical transformationEdit

Consider the canonical transformation that depends on a continuous parameter <math>\alpha </math>, as follows:

<math display="block">\begin{align} & Q(q,p,t;\alpha) \quad \quad \quad & Q(q,p,t;0)=q \\ & P(q,p,t;\alpha) \quad \quad \text{with} \quad & P(q,p,t;0)=p \\ \end{align} </math>

For infinitesimal values of <math>\alpha </math>, the corresponding transformations are called as infinitesimal canonical transformations which are also known as differential canonical transformations.

Explicit constructionEdit

Consider the following generating function:

<math display="block">G_2(q,P,t)= qP + \alpha G(q,P,t) </math>

Since for <math>\alpha=0 </math>, <math>G_2 = qP </math> has the resulting canonical transformation, <math>Q = q </math> and <math>P = p </math>, this type of generating function can be used for infinitesimal canonical transformation by restricting <math>\alpha </math> to an infinitesimal value.

From the conditions of generators of second type:

<math display="block">\begin{align} {p} &= \frac{\partial G_{2}}{\partial {q}} = P + \alpha \frac{\partial G}{\partial {q}} (q,P,t) \\ {Q} &= \frac{\partial G_{2}}{\partial {P}} = q + \alpha \frac{\partial G}{\partial {P}} (q,P,t) \\ \end{align}</math>


Since <math>P = P(q,p,t;\alpha) </math>, changing the variables of the function <math>G </math> to <math>G(q,p,t) </math> and neglecting terms of higher order of <math>\alpha </math>, gives:<ref>Template:Harvnb</ref>

<math display="block">\begin{align} {p} &= P + \alpha \frac{\partial G}{\partial {q}} (q,p,t) \\ {Q} &= q + \alpha \frac{\partial G}{\partial p} (q,p,t) \\ \end{align}</math>

Infinitesimal canonical transformations can also be derived using the matrix form of the symplectic condition.<ref name=":1">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The function <math>G(q,p,t) </math> is very significant in infinitesimal canonical transformations and is referred to as the generator of infinitesimal canonical transformation.

Active and passive transformationsEdit

Template:See also In the active view of transformations, the coordinate system is changed without the physical system changing, whereas in the passive view of transformation, the coordinate system is retained and the physical system is said to undergo transformations.

Active view of transformationEdit

Thus, using the relations from infinitesimal canonical transformations, the change in the system states under active view of the canonical transformation is said to be:

<math display="block">\begin{align} & \delta q = \alpha \frac{\partial G}{\partial p} (q,p,t) \quad \text{and} \quad \delta p = - \alpha \frac{\partial G}{\partial q} (q,p,t) , \\ \end{align} </math>


or as <math>\delta \eta = \alpha J \nabla_\eta G </math> in matrix form.


For any function <math>u(\eta) </math>, it changes under active view of the transformation according to:

<math display="block">\delta u = u(\eta +\delta \eta)-u(\eta) = (\nabla_\eta u)^T\delta\eta=\alpha (\nabla_\eta u)^T J (\nabla_\eta G) = \alpha \{ u,G \} . </math>

Passive view of transformationEdit

Considering the change of Hamiltonians in the passive view, i.e., for a fixed point,<math display="block">K(Q=q_0,P=p_0,t) - H(q=q_0,p=p_0,t) = \left(H(q_0',p_0',t) + \frac{\partial G_{2}}{\partial t}\right) - H(q_0,p_0,t) = - \delta H +\alpha \frac{\partial G}{\partial t} = \alpha\left(\{ G,H\}+\frac{\partial G}{\partial t} \right)=\alpha\frac{dG}{dt} </math>

where <math display="inline">(q=q_0',p=p_0') </math> are mapped to the point, <math display="inline">(Q=q_0,P=p_0) </math> by the infinitesimal canonical transformation, and similar change of variables for <math>G(q,P,t) </math> to <math>G(q,p,t) </math> is considered up-to first order of <math>\alpha </math>. Hence, if the Hamiltonian is invariant for infinitesimal canonical transformations, its generator is a constant of motion.

Generators of dynamical symmetry transformationsEdit

Consider the transformation where the change of coordinates also depends on the generalized velocities.

<math display="block">\begin{align} q^r\to q^r+\delta q^r\\ \delta q^r=\epsilon\phi^r(q,\dot{q},t)\\ \end{align}</math>

If the above is a dynamical symmetry, then the lagrangian changes by:

<math display="block">\delta L=\epsilon\frac d {dt}F(q,\dot q,t)</math>

and the new Lagrangian is said to be dynamically equivalent to the old Lagrangian as it ensures the resultant equations of motion being the same. The change in generalized velocity and momentum term can be derived as:

<math display="block">\begin{align} p=\frac{\partial L}{\partial \dot q}, \quad& \dot q=\frac {dq}{dt}\\ \delta p_r=\frac{\partial^2L}{\partial q^s\partial\dot q^r}\delta q^s+\frac{\partial^2 L}{\partial \dot q^s\partial \dot q^r}\delta \dot q^s,\quad&\delta \dot q^r=\epsilon \frac{\partial \phi^r}{\partial q^s} \dot q^s+\epsilon \frac{\partial \phi^r}{\partial \dot q^s}\ddot q^s+\epsilon\frac{\partial\phi^r}{\partial t} \\ \end{align}</math>

Generator of transformationEdit

Using the change in Lagrangian property of a dynamical symmetry:

<math display="block">\frac d{dt}F=\frac{\partial F}{\partial q^r}\dot q^r+\frac{\partial F}{\partial \dot q^r}\ddot q^r+\frac{\partial F}{\partial t}=\frac{\delta L}{\epsilon}=\left(\frac{\partial L}{\partial q^r}\phi^r+\frac{\partial L}{\partial \dot q^r}\frac{\partial \phi^r}{\partial t}\right)+p_s\frac{\partial \phi^s}{\partial q^r}\dot q^r+p_s\frac{\partial \phi^s}{\partial \dot q^r}\ddot q^r</math>

Since the <math>\ddot q</math> terms appear only once in either side, it's coefficients must be equal for this to be true, giving the relation: <math display="inline">p_s\frac{\partial \phi^s}{\partial \dot q^r}=\frac{\partial F}{\partial \dot q^r} </math> using which, it can be shown that

<math display="block"> \{q^r,\epsilon (p_s\phi^s-F)\}=\delta q^r,\quad \{p_r,\epsilon(p_s\phi^s-F)\}=\delta p_r+\epsilon\left(\frac{\partial L}{\partial q^s}-\frac{d}{dt}\frac{\partial L}{\partial \dot q^s}\right)\frac{\partial \phi^s}{\partial \dot q^r}</math>

Hence, the term <math>p\phi-F</math> generates the canonical dynamical symmetry transformation if either the Euler Lagrange relation gives zero, or if <math>\frac{\partial \phi_s}{\partial \dot q^r}=0\,\forall s,r</math> which is a infinitesimal point transformation. Note that in the point transformation condition, the quantity generates the transformation regardless of if the Euler Lagrange equations are satisfied and since they do not depend on the dynamics of the problem are said to be a purely kinematic relation.<ref>Template:Cite journal</ref>

Noether InvariantEdit

Using Euler Lagrange relation for the provided Lagrangian, the invariants of motion can be derived as:<math display="block">\delta L-\epsilon\frac d {dt}F(q,\dot q,t)= \epsilon\phi\cancelto{=0}{\left(\frac{\partial}{\partial q}-\frac{d}{dt}\frac{\partial}{\partial \dot q}\right)L}+\epsilon\frac{d}{dt}\left(\phi\frac{\partial}{\partial \dot q}L- F\right)=\epsilon\frac{d}{dt}\left(\phi\frac{\partial}{\partial \dot q}L- F\right)=0</math>

Hence <math>\left(\phi\frac{\partial}{\partial \dot q}L-F\right)=p\phi-F</math> is a constant of motion. Hence, the derived Noether invariant also generates the same symmetry transformation as shown previously.

Examples of ICTEdit

Time evolutionEdit

Taking <math>G(q,p,t)=H(q,p,t) </math> and <math>\alpha = dt </math>, then <math>\delta \eta = (J \nabla_\eta H) dt = \dot{\eta} dt = d\eta </math>. Thus the continuous application of such a transformation maps the coordinates <math>\eta(\tau) </math> to <math>\eta(\tau+t) </math>. Hence if the Hamiltonian is time translation invariant, i.e. does not have explicit time dependence, its value is conserved for the motion.

TranslationEdit

Taking <math>G(q,p,t)=p_k </math>, <math> \delta p_i = 0 </math> and <math> \delta q_i = \alpha \delta_{ik} </math>. Hence, the canonical momentum generates a shift in the corresponding generalized coordinate and if the Hamiltonian is invariant of translation, the momentum is a constant of motion.

RotationEdit

Consider an orthogonal system for an N-particle system:

<math display="block">\begin{array}{l}{{\mathbf q=\left(x_{1},y_{1},z_{1},\ldots,x_{n},y_{n},z_{n}\right),}}\\ {{\mathbf p=\left(p_{1x},p_{1y},p_{1z},\ldots,p_{n x},p_{n y},p_{n z}\right).}}\end{array}</math>

Choosing the generator to be: <math>G=L_{z}=\sum_{i=1}^{n}\left(x_{i}p_{i y}-y_{i}p_{i x}\right) </math> and the infinitesimal value of <math> \alpha = \delta \phi </math>, then the change in the coordinates is given for x by:

<math display="block">\begin{array}{c} {\delta x_{i}=\{x_{i},G\}\delta\phi=\displaystyle\sum_{j} \{x_{i},x_{j}p_{j y}-y_{j}p_{j x}\}\delta\phi=\displaystyle\sum_{j}(\underbrace{\{x_{i},x_{j}p_{j y}\}}_{=0} -{ \{x_{i},y_{j}p_{j x}\}}})\delta\phi\\ {{=\displaystyle -\sum_{j} y_{j} \underbrace{\{x_i,p_{jx}\}}_{=\delta_{ij}}\delta\phi=- y_{i} \delta \phi}} \end{array} </math>

and similarly for y:

<math display="block">\begin{array}{c}

\delta y_{i}=\{y_{i},G\}\delta\phi=\displaystyle\sum_{j}\{y_{i},x_{j}p_{j y}-y_{j}p_{j x}\}\delta\phi=\displaystyle\sum_{j}(\{y_{i},x_{j}p_{j y}\}-\underbrace{ \{y_{i},y_{j}p_{j x}\}}_{=0})\delta \phi\\ {=\displaystyle\sum_{j}x_{j}\underbrace{\{y_i,p_{jy}\}}_{=\delta_{ij}} \delta\phi=x_{i}\delta\phi\,,} \end{array} </math>

whereas the z component of all particles is unchanged: <math display="inline"> \delta z_{ i }=\left\{z_{i},G\right\}\delta\phi=\sum_{j}\left\{z_{i},x_{j}p_{j y}-y_{j}p_{j x}\right\}\delta \phi =0</math>.

These transformations correspond to rotation about the z axis by angle <math>\delta \phi </math> in its first order approximation. Hence, repeated application of the infinitesimal canonical transformation generates a rotation of system of particles about the z axis. If the Hamiltonian is invariant under rotation about the z axis, the generator, the component of angular momentum along the axis of rotation, is an invariant of motion.<ref name=":1" />

One parameter subgroup of Canonical transformationsEdit

Allowing the values of <math>\alpha </math> to take continuous range of values in:

<math display="block">\begin{align} & Q(q,p,t;\alpha) \quad \quad \quad & Q(q,p,t;0)=q \\ & P(q,p,t;\alpha) \quad \quad \text{with} \quad & P(q,p,t;0)=p \\ \end{align} </math>

which can be expressed as <math>\epsilon^\mu(\eta,t;\alpha ) </math> where <math>\epsilon^\mu(\eta,t;0)=\eta^\mu </math>.


One parameter subgroup of Canonical transformations are those where the generator of the transformation can be used to generate coordinates where<math>\epsilon^\mu(\epsilon(\eta,t;\alpha_1);\alpha_2)=\epsilon^\mu(\eta,t;\alpha_1+\alpha_2) </math> is satisfied, i.e. composition of two canonical transformations of parameter <math>\alpha_1 </math> and <math>\alpha_2 </math> are the same as that of a single canonical transformation of parameter <math>\alpha_1+\alpha_2 </math>.


The condition on the transformations of the one parameter subgroup kind can be expressed equivalently as a differential equation:

<math display="block">\delta\epsilon^\mu(\eta,t;\alpha)=\delta\alpha\{\epsilon^\nu,G \}=\delta\alpha J^{\mu\nu}\frac{\partial G}{\partial \epsilon^\nu}(\epsilon(\eta,t;\alpha ),t) \implies \frac{d\epsilon^\mu(\eta,t;\alpha)}{d \alpha}= J^{\mu\nu}\frac{\partial G}{\partial \epsilon^\nu}(\epsilon(\eta,t;\alpha ),t) </math>

for all <math>\eta </math> given that the generator has no explicit dependance on <math>\alpha </math>. The conditions <math>\epsilon^\mu(\epsilon(\eta,t;\alpha_1);\alpha_2)=\epsilon^\mu(\eta,t;\alpha_1+\alpha_2) </math> can be recovered since this equation is trivially satisfied when <math>\alpha_2=0 </math> which is considered initial values and the differential equations of both sides are of the same form implying the relation due to uniqueness of solutions with given initial values. Hence one parameter subgroups of canonical transformations are extension of infinitesimal canonical transformations to finite values of <math>\alpha </math> by using the same functional form of its generator independent of parameter <math>\alpha </math>.<ref name=":2" />


As a consequence of the generator having no explicit dependance on <math>\alpha </math>, the generator is also implicitly independent of <math>\alpha </math>.

<math display="block">\frac{d G(\epsilon(\eta;\alpha),t)}{d \alpha}=\{G,G\}=0,\,\forall \alpha \implies G(\epsilon(\eta;\alpha),t)=G(\eta,t) </math>

This can be used to express the differential equation as:

<math display="block">\frac{d\epsilon^\mu(\eta,t;\alpha)}{d \alpha}= \{\epsilon^\mu(\eta,t;\alpha),G(\eta,t)\}_\eta=:-\tilde G \epsilon^\mu </math>

where the linear differential operator is defined as <math>\tilde G:= (\nabla_\eta G)^T J \nabla_\eta </math>.

Active view of transformationEdit

Upon iteratively solving the differential equation, the solution of the differential equation follows as:<ref name=":2">Template:Harvnb</ref>

<math display="block">\epsilon(\eta,t;\alpha)=\eta+ \alpha\{\eta,G(\eta,t)\}+\frac{1}{2!}\alpha^2 \{\{\eta,G(\eta,t)\},G(\eta,t)\}+\cdots=e^{- \alpha \tilde G} \eta</math>


Change in function values <math>\frac{df(\epsilon(\eta;\alpha),t)}{d \alpha}= \{f(\epsilon(\eta;\alpha),t),G(\eta,t)\}_\eta=:-\tilde G f(\epsilon(\eta;\alpha),t) </math> by taking repeatedly in steps and using <math>\epsilon(\eta,t;0)=\eta </math> we get similarly

<math display="block">f(e^{-\alpha\tilde G}\eta,t)=f(\epsilon(\eta;\alpha),t)=f(\eta,t)+ \alpha\{f(\eta,t),G(\eta,t)\}+\frac{1}{2!}\alpha^2 \{\{f(\eta,t),G(\eta,t)\},G(\eta,t)\}+\cdots=e^{- \alpha \tilde G} f(\eta,t) </math>

Passive view of transformationEdit

Change in a function can be invoked by preserving its values on the same physical states in phase space as <math>f(\epsilon,t)=f(\epsilon(\eta;\alpha),t)=f'(\epsilon(\eta;\alpha+\delta\alpha),t)= f'(\epsilon',t) </math> can be expressed as upto first order as:

<math display="block">\delta' f=f'(\epsilon)-f(\epsilon)=f'(\epsilon)-f'(\epsilon')\approx f(\epsilon(\eta;\alpha-\delta\alpha))-f(\epsilon(\eta;\alpha)) =-\delta \alpha\{f,G\} </math>

Including the change in the function as some explicit dependance on parameter of transformation <math>\alpha </math>, it can be expressed as <math>f(\epsilon,t;\alpha) </math> where it is explicitly dependant on <math>\alpha </math> such that <math>\frac{\partial f(\epsilon,t;\alpha)}{\partial \alpha} =-\{f,G\} </math> which indicates that the function transforms oppositely to that due to the coordinates to preserve well defined mapping from a physical point in phase space to its scalar values. It is also possible that functions transform without needing to preserve its values on the same physical states in phase space. Such as, for example, the Hamiltonian whose explicit dependance on the canonical transformation can be different from the above form, restated from its previous derivation as

<math display="block">\frac{\partial H(\epsilon,t;\alpha)}{\partial \alpha} =\frac{dG}{dt} </math>

which is similar to previous relation but also accounts for any explicit time dependence of the generator. Hence, if the Hamiltonian is invariant in passive view for infinitesimal canonical transformations, its generator is a constant of motion.<ref name=":2" />

Motion as canonical transformationEdit

Motion itself (or, equivalently, a shift in the time origin) is a canonical transformation. If <math>\mathbf{Q}(t) \equiv \mathbf{q}(t+\tau)</math> and <math>\mathbf{P}(t) \equiv \mathbf{p}(t+\tau)</math>, then Hamilton's principle is automatically satisfied<math display="block"> \delta \int_{t_1}^{t_2} \left[ \mathbf{P} \cdot \dot{\mathbf{Q}} - K(\mathbf{Q}, \mathbf{P}, t) \right] dt = \delta \int_{t_1 + \tau}^{t_2 + \tau} \left[ \mathbf{p} \cdot \dot{\mathbf{q}} - H(\mathbf{q}, \mathbf{p}, t+\tau) \right] dt = 0 </math>since a valid trajectory <math>(\mathbf{q}(t), \mathbf{p}(t))</math> should always satisfy Hamilton's principle, regardless of the endpoints.

ExamplesEdit

  • The translation <math>\mathbf{Q}(\mathbf{q}, \mathbf{p})= \mathbf{q} + \mathbf{a}, \mathbf{P}(\mathbf{q}, \mathbf{p})= \mathbf{p} + \mathbf{b}</math> where <math>\mathbf{a}, \mathbf{b}</math> are two constant vectors is a canonical transformation. Indeed, the Jacobian matrix is the identity, which is symplectic: <math>I^\text{T}JI=J</math>.
  • Set <math>\mathbf{x}=(q,p)</math> and <math>\mathbf{X}=(Q,P)</math>, the transformation <math>\mathbf{X}(\mathbf{x})=R \mathbf{x}</math> where <math>R \in SO(2)</math> is a rotation matrix of order 2 is canonical. Keeping in mind that special orthogonal matrices obey <math>R^\text{T}R=I</math> it's easy to see that the Jacobian is symplectic. However, this example only works in dimension 2: <math>SO(2)</math> is the only special orthogonal group in which every matrix is symplectic. Note that the rotation here acts on <math>(q,p)</math> and not on <math>q</math> and <math>p</math> independently, so these are not the same as a physical rotation of an orthogonal spatial coordinate system.
  • The transformation <math>(Q(q,p), P(q,p))=(q+f(p), p)</math>, where <math>f(p)</math> is an arbitrary function of <math>p</math>, is canonical. Jacobian matrix is indeed given by <math display="block">\frac{\partial X}{\partial x} = \begin{bmatrix} 1 & f'(p) \\ 0 & 1 \end{bmatrix}</math> which is symplectic.

Modern mathematical descriptionEdit

In mathematical terms, canonical coordinates are any coordinates on the phase space (cotangent bundle) of the system that allow the canonical one-form to be written as <math display="block">\sum_i p_i\,dq^i</math> up to a total differential (exact form). The change of variable between one set of canonical coordinates and another is a canonical transformation. The index of the generalized coordinates Template:Math is written here as a superscript (<math>q^{i}</math>), not as a subscript as done above (<math>q_{i}</math>). The superscript conveys the contravariant transformation properties of the generalized coordinates, and does not mean that the coordinate is being raised to a power. Further details may be found at the symplectomorphism article.

HistoryEdit

The first major application of the canonical transformation was in 1846, by Charles Delaunay, in the study of the Earth-Moon-Sun system. This work resulted in the publication of a pair of large volumes as Mémoires by the French Academy of Sciences, in 1860 and 1867.

See alsoEdit

NotesEdit

Template:Reflist

ReferencesEdit