Xanthine

Revision as of 13:09, 30 March 2025 by imported>AlyInWikiWonderland (Navbox.)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Distinguish Template:Chembox Xanthine (Template:IPAc-en or Template:IPAc-en, from Ancient Greek {{#invoke:Lang|lang}} {{#invoke:Lang|lang}} Template:Gloss for its yellowish-white appearance; archaically xanthic acid; systematic name 3,7-dihydropurine-2,6-dione) is a purine base found in most human body tissues and fluids, as well as in other organisms.<ref name="pubchem">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Several stimulants are derived from xanthine, including caffeine, theophylline, and theobromine.<ref name="isbn0-8493-2647-8">Template:Cite book</ref><ref name=":0">Template:Cite book</ref>

Xanthine is a product on the pathway of purine degradation.<ref name=pubchem/>

Xanthine is subsequently converted to uric acid by the action of the xanthine oxidase enzyme.<ref name=pubchem/>

Use and productionEdit

Xanthine is used as a drug precursor for human and animal medications, and is produced as a pesticide ingredient.<ref name=pubchem/>

Clinical significanceEdit

Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma or influenza symptoms.<ref name=pubchem/> In contrast to other, more potent stimulants like sympathomimetic amines, xanthines mainly act to oppose the actions of adenosine, and increase alertness in the central nervous system.<ref name=pubchem/>

ToxicityEdit

Methylxanthines (methylated xanthines), which include caffeine, aminophylline, IBMX, paraxanthine, pentoxifylline, theobromine, theophylline, and 7-methylxanthine (heteroxanthine), among others, affect the airways, increase heart rate and force of contraction, and at high concentrations can cause cardiac arrhythmias.<ref name=pubchem/> In high doses, they can lead to convulsions that are resistant to anticonvulsants.<ref name=pubchem/> Methylxanthines induce gastric acid and pepsin secretions in the gastrointestinal tract.<ref name=pubchem/> Methylxanthines are metabolized by cytochrome P450 in the liver.<ref name=pubchem/>

If swallowed, inhaled, or exposed to the eyes in high amounts, xanthines can be harmful, and they may cause an allergic reaction if applied topically.<ref name=pubchem/>

PharmacologyEdit

File:Methylxanthine.png
Xanthine: R1 = R2 = R3 = H
Caffeine: R1 = R2 = R3 = CH3
Theobromine: R1 = H, R2 = R3 = CH3
Theophylline: R1 = R2 = CH3, R3 = H

In in vitro pharmacological studies, xanthines act as both competitive nonselective phosphodiesterase inhibitors and nonselective adenosine receptor antagonists. Phosphodiesterase inhibitors raise intracellular cAMP, activate PKA, inhibit TNF-α synthesis,<ref name=pubchem/><ref name="pmid9927365">Template:Cite journal</ref><ref name=":0" /> and leukotriene<ref name="LT-Peters-Golden">Template:Cite journal</ref> and reduce inflammation and innate immunity.<ref name="LT-Peters-Golden"/> Adenosine receptor antagonists<ref name="pmid3588607"/> inhibit sleepiness-inducing adenosine.<ref name=pubchem/>

However, different analogues show varying potency at the numerous subtypes, and a wide range of synthetic xanthines (some nonmethylated) have been developed searching for compounds with greater selectivity for phosphodiesterase enzyme or adenosine receptor subtypes.<ref name=pubchem/><ref name="pmid3806581">Template:Cite journal</ref><ref name="pmid3588607">Template:Cite journal</ref><ref name="pmid1658821">Template:Cite journal</ref><ref name="pmid17668454">Template:Cite journal</ref><ref name="pmid18181659">Template:Cite journal</ref>

Examples of xanthine derivatives
Name R1 R2 R3 R8 IUPAC nomenclature Found in
Xanthine H H H H 3,7-Dihydro-purine-2,6-dione Plants, animals
7-Methylxanthine H H CH3 H 7-methyl-3H-purine-2,6-dione Metabolite of caffeine and theobromine
Theobromine H CH3 CH3 H 3,7-Dihydro-3,7-dimethyl-1H-purine-2,6-dione Cacao (chocolate), yerba mate, kola, guayusa
Theophylline CH3 CH3 H H 1,3-Dimethyl-7H-purine-2,6-dione Tea, cacao (chocolate), yerba mate, kola
Paraxanthine CH3 H CH3 H 1,7-Dimethyl-7H-purine-2,6-dione Animals that have consumed caffeine
Caffeine CH3 CH3 CH3 H 1,3,7-Trimethyl-1H-purine-2,6(3H,7H)-dione Coffee, guarana, yerba mate, tea, kola, guayusa, Cacao (chocolate)
8-Chlorotheophylline CH3 CH3 H Cl 8-Chloro-1,3-dimethyl-7H-purine-2,6-dione Synthetic pharmaceutical ingredient
8-Bromotheophylline CH3 CH3 H Br 8-Bromo-1,3-dimethyl-7H-purine-2,6-dione Pamabrom diuretic medication
Diprophylline CH3 CH3 C3H7O2 H 7-(2,3-Dihydroxypropyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione Synthetic pharmaceutical ingredient
IBMX CH3 C4H9 H H 1-Methyl-3-(2-methylpropyl)-7H-purine-2,6-dione
Uric acid H H H O 7,9-Dihydro-1H-purine-2,6,8(3H)-trione Byproduct of purine nucleotides metabolism and a normal component of urine

PathologyEdit

People with rare genetic disorders, specifically xanthinuria and Lesch–Nyhan syndrome, lack sufficient xanthine oxidase and cannot convert xanthine to uric acid.<ref name=pubchem/>

Possible formation in absence of lifeEdit

Studies reported in 2008, based on 12C/13C isotopic ratios of organic compounds found in the Murchison meteorite, suggested that xanthine and related chemicals, including the RNA component uracil, have been formed extraterrestrially.<ref name="Murch_base">Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> In August 2011, a report, based on NASA studies with meteorites found on Earth, was published suggesting xanthine and related organic molecules, including the DNA and RNA components adenine and guanine, were found in outer space.<ref name="Callahan">Template:Cite journal</ref><ref name="Steigerwald">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name="DNA">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

See alsoEdit

ReferencesEdit

Template:Reflist

{{#invoke:Navbox|navbox}} Template:Asthma and copd rx Template:Nucleotide metabolism intermediates Template:Adenosine receptor modulators Template:Chemical classes of psychoactive drugs