Star refinement

Revision as of 02:39, 20 August 2023 by imported>PatrickR2 (→‎Properties and Examples: ref formatting)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, specifically in the study of topology and open covers of a topological space X, a star refinement is a particular kind of refinement of an open cover of X. A related concept is the notion of barycentric refinement.

Star refinements are used in the definition of fully normal space and in one definition of uniform space. It is also useful for stating a characterization of paracompactness.

DefinitionsEdit

The general definition makes sense for arbitrary coverings and does not require a topology. Let <math>X</math> be a set and let <math>\mathcal U</math> be a covering of <math>X,</math> that is, <math display="inline">X = \bigcup \mathcal U.</math> Given a subset <math>S</math> of <math>X,</math> the star of <math>S</math> with respect to <math>\mathcal U</math> is the union of all the sets <math>U \in \mathcal U</math> that intersect <math>S,</math> that is, <math display=block>\operatorname{st}(S, \mathcal U) = \bigcup\big\{U \in \mathcal U: S\cap U \neq \varnothing\big\}.</math>

Given a point <math>x \in X,</math> we write <math>\operatorname{st}(x,\mathcal U)</math> instead of <math>\operatorname{st}(\{x\}, \mathcal U).</math>

A covering <math>\mathcal U</math> of <math>X</math> is a refinement of a covering <math>\mathcal V</math> of <math>X</math> if every <math>U \in \mathcal U</math> is contained in some <math>V \in \mathcal V.</math> The following are two special kinds of refinement. The covering <math>\mathcal U</math> is called a barycentric refinement of <math>\mathcal V</math> if for every <math>x \in X</math> the star <math>\operatorname{st}(x,\mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>Template:SfnTemplate:Sfn The covering <math>\mathcal U</math> is called a star refinement of <math>\mathcal V</math> if for every <math>U \in \mathcal U</math> the star <math>\operatorname{st}(U, \mathcal U)</math> is contained in some <math>V \in \mathcal V.</math>Template:SfnTemplate:Sfn

Properties and ExamplesEdit

Every star refinement of a cover is a barycentric refinement of that cover. The converse is not true, but a barycentric refinement of a barycentric refinement is a star refinement.Template:SfnTemplate:Sfn<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Given a metric space <math>X,</math> let <math>\mathcal V=\{B_\epsilon(x): x\in X\}</math> be the collection of all open balls <math>B_\epsilon(x)</math> of a fixed radius <math>\epsilon>0.</math> The collection <math>\mathcal U=\{B_{\epsilon/2}(x): x\in X\}</math> is a barycentric refinement of <math>\mathcal V,</math> and the collection <math>\mathcal W=\{B_{\epsilon/3}(x): x\in X\}</math> is a star refinement of <math>\mathcal V.</math>

See alsoEdit

NotesEdit

Template:Reflist

ReferencesEdit