Decaborane

Revision as of 09:46, 17 February 2025 by 139.133.212.202 (talk) (→‎Handling, properties and structure)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

Template:Chembox Decaborane, also called decaborane(14), is the inorganic compound with the chemical formula B10H14. It is classified as a borane and more specifically a boron hydride cluster. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It is toxic and volatile, giving off a foul odor, like that of burnt rubber or chocolate.

Handling, properties and structureEdit

The physical characteristics of decaborane(14) resemble those of naphthalene and anthracene, all three of which are volatile colorless solids. Sublimation is the common method of purification. Decaborane is highly flammable, and burns with a bright green flame like other boron hydrides. It is not sensitive to moist air, although it hydrolyzes in boiling water, releasing hydrogen and giving a solution of boric acid. It is soluble in cold water as well as a variety of non-polar and moderately polar solvents.<ref name=IS/>

In decaborane, the B10 framework resembles an incomplete octadecahedron. Each boron atom has one "radial" hydride, and four boron atoms near the open part of the cluster feature extra bridging hydrides. In the language of cluster chemistry, the structure is classified as "nido".

Synthesis and reactionsEdit

It is commonly synthesized via the pyrolysis of smaller boron hydride clusters. For example, pyrolysis of B2H6 or B5H9 gives decaborane, with loss of H2.<ref>Template:Greenwood&Earnshaw</ref> On a laboratory scale, sodium borohydride is treated with boron trifluoride to give NaB11H14, which is acidified to release borane and hydrogen gas.<ref name=IS>Gary B. Dunks, Kathy Palmer-Ordonez, Eddie Hedaya "Decaborane(14)" Inorg. Synth. 1983, vol. 22, pp. 202–207. {{#invoke:doi|main}}</ref>

It reacts with Lewis bases (L) such as CH3CN and Et2S, to form adducts:<ref name=LJT>Template:Cite book</ref><ref name=MFH>Template:Cite book</ref>

B10H14 + 2 L → B10H12L2 + H2

These species, which are classified as "arachno" clusters, in turn react with acetylene to give the "closo" ortho-carborane:

B10H12·2L + C2H2 → C2B10H12 + 2 L + H2

Decaborane(14) is a weak Brønsted acid. Monodeprotonation generates the anion [B10H13], with again a nido structure.

In the Brellochs reaction, decaborane is converted to arachno-CB9H14:

B10H14 + CH2O + 2 OH + H2O → CB9H14 + B(OH)4 + H2

Possible applicationsEdit

Decaborane has no significant commercial applications, although the compound has often been investigated. It and its derivatives were investigated as an additive to special high-performance rocket fuels. Its derivates were investigated as well, e.g. ethyl decaborane.Template:Cn

Decaborane is an effective reagent for the reductive amination of ketones and aldehydes.<ref>Template:Cite journal</ref>

Decaborane has been assessed for low energy ion implantation of boron in the manufacture of semiconductors. It has also been considered for plasma-assisted chemical vapor deposition for the manufacture of boron-containing thin films. In fusion research, the neutron-absorbing nature of boron has led to the use of these thin boron-rich films to "boronize" the walls of the tokamak vacuum vessel to reduce recycling of particles and impurities into the plasma and improve overall performance.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> It has been evaluated in the context of nuclear fusion.<ref>Template:Cite news</ref>

SafetyEdit

Decaborane, like pentaborane, is a powerful toxin affecting the central nervous system, although decaborane is less toxic than pentaborane. It can be absorbed through skin.

Purification by sublimation require a dynamic vacuum to remove evolved gases. Crude samples explode near 100 °C.<ref name=MFH/>

It forms an explosive mixture with carbon tetrachloride, which caused an often-mentioned explosion in a manufacturing facility.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

In crystalline form, it reacts violently with red and white fuming nitric acid which has a use as rocket fuel oxidizer, producing an extremely powerful detonation.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>


ReferencesEdit

Template:Reflist

Further readingEdit

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

Template:Boron compounds Template:Hydrides by group