Bessel's inequality
Template:Short description In mathematics, especially functional analysis, Bessel's inequality is a statement about the coefficients of an element <math>x</math> in a Hilbert space with respect to an orthonormal sequence. The inequality was derived by F.W. Bessel in 1828.<ref name="EoM">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Countable orthonormal sequence in a Hilbert spaceEdit
Let <math>H</math> be a Hilbert space, and suppose that <math>e_1, e_2, ...</math> is an orthonormal sequence in <math>H</math>. Then, for any <math>x</math> in <math>H</math> one has
- <math>\sum_{k=1}^{\infty}\left\vert\left\langle x,e_k\right\rangle \right\vert^2 \le \left\Vert x\right\Vert^2,</math>
where ⟨·,·⟩ denotes the inner product in the Hilbert space <math>H</math>.<ref>Template:Cite book</ref><ref>Template:Cite book</ref><ref>Template:Cite book</ref> If we define the infinite sum
- <math>x' = \sum_{k=1}^{\infty}\left\langle x,e_k\right\rangle e_k, </math>
consisting of the "infinite sum" of the vector resolute <math>x</math> in the directions <math>e_k</math>, Bessel's inequality tells us that this series converges. One can think of it that there exists <math>x' \in H</math> that can be described in terms of potential basis <math>e_1, e_2, \dots</math>.
For a complete orthonormal sequence (that is, for an orthonormal sequence that is a basis), we have Parseval's identity, which replaces the inequality with an equality (and consequently <math>x'</math> with <math>x</math>).
Bessel's inequality follows from the identity
- <math>\begin{align}
0 \leq \left\| x - \sum_{k=1}^n \langle x, e_k \rangle e_k\right\|^2 &= \|x\|^2 - 2 \sum_{k=1}^n \operatorname{Re} \langle x, \langle x, e_k \rangle e_k \rangle + \sum_{k=1}^n | \langle x, e_k \rangle |^2 \\ &= \|x\|^2 - 2 \sum_{k=1}^n |\langle x, e_k \rangle |^2 + \sum_{k=1}^n | \langle x, e_k \rangle |^2 \\ &= \|x\|^2 - \sum_{k=1}^n | \langle x, e_k \rangle |^2, \end{align}</math> which holds for any natural n.
Fourier seriesEdit
In the theory of Fourier series, in the particular case of the Fourier orthonormal system, we get if <math>f \colon \mathbb{R} \to \mathbb{C} </math> has period <math>T</math>,
- <math>
\sum_{k \in \mathbb{Z}} \left\vert \int_0^T e^{-2 \pi i k t/T} f (t) \,\mathrm{d}t\right\vert^2 \le T \int_0^T \vert f (t)\vert^2 \,\mathrm{d}t.
</math> In the particular case where <math>f \colon \mathbb{R} \to \mathbb{R} </math>, one has then
- <math>
\left\vert \int_0^T f (t) \,\mathrm{d}t\right\vert^2 + 2 \sum_{n = 1}^\infty \left\vert \int_0^T \cos (2 \pi k t/T) f (t) \,\mathrm{d}t\right\vert^2 + 2 \sum_{n = 1}^\infty \left\vert \int_0^T \sin (2 \pi k t/T) f (t) \,\mathrm{d}t\right\vert^2 \le T \int_0^T \vert f (t)\vert^2 \,\mathrm{d}t.
</math>
Non countable caseEdit
More generally, if <math>H</math> is a pre-Hilbert space and <math>(e_\alpha)_{\alpha \in A}</math> is an orthonormal system, then for every <math>x \in H</math><ref name="EoM" />
- <math>
\sum_{\alpha \in A} | \langle x, e_\alpha \rangle |^2 \le \lVert x \rVert^2
</math> This is proved by noting that if <math>F \subseteq A</math> is finite, then
- <math>
\sum_{\alpha \in F} | \langle x, e_\alpha \rangle |^2 \le \lVert x \rVert^2
</math> and then by definition of infinite sum
- <math>
\sum_{\alpha \in A} | \langle x, e_\alpha \rangle |^2 = \Bigl\{\sum_{\alpha \in F} | \langle x, e_\alpha \rangle |^2 : F \subseteq A \text{ is finite}\Bigr\} \le \lVert x \rVert^2.
</math>
See alsoEdit
ReferencesEdit
External linksEdit
- Template:Springer
- Bessel's Inequality the article on Bessel's Inequality on MathWorld.
{{#if: | This article incorporates material from the following PlanetMath articles, which are licensed under the Creative Commons Attribution/Share-Alike License: {{#if: | Bessel inequality | {{#if: 3089 | Bessel inequality | [{{{sourceurl}}} Bessel inequality] }} }}, {{#if: | {{{title2}}} | {{#if: | {{{title2}}} | [{{{sourceurl2}}} {{{title2}}}] }} }}{{#if: | , {{#if: | {{{title3}}} | {{#if: | {{{title3}}} | [{{{sourceurl3}}} {{{title3}}}] }} }} }}{{#if: | , {{#if: | {{{title4}}} | {{#if: | {{{title4}}} | [{{{sourceurl4}}} {{{title4}}}] }} }} }}{{#if: | , {{#if: | {{{title5}}} | {{#if: | {{{title5}}} | [{{{sourceurl5}}} {{{title5}}}] }} }} }}{{#if: | , {{#if: | {{{title6}}} | {{#if: | {{{title6}}} | [{{{sourceurl6}}} {{{title6}}}] }} }} }}{{#if: | , {{#if: | {{{title7}}} | {{#if: | {{{title7}}} | [{{{sourceurl7}}} {{{title7}}}] }} }} }}{{#if: | , {{#if: | {{{title8}}} | {{#if: | {{{title8}}} | [{{{sourceurl8}}} {{{title8}}}] }} }} }}{{#if: | , {{#if: | {{{title9}}} | {{#if: | {{{title9}}} | [{{{sourceurl9}}} {{{title9}}}] }} }} }}. | This article incorporates material from {{#if: | Bessel inequality | Bessel inequality}} on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. }}
Template:Lp spaces Template:Functional analysis Template:Hilbert space