Carmichael function
Template:Short description In number theory, a branch of mathematics, the Carmichael function Template:Math of a positive integer Template:Mvar is the smallest positive integer Template:Mvar such that
- <math>a^m \equiv 1 \pmod{n}</math>
holds for every integer Template:Mvar coprime to Template:Mvar. In algebraic terms, Template:Math is the exponent of the [[multiplicative group of integers modulo n|multiplicative group of integers modulo Template:Mvar]]. As this is a finite abelian group, there must exist an element whose order equals the exponent, Template:Math. Such an element is called a primitive Template:Math-root modulo Template:Mvar.
The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910.<ref> Template:Cite journal </ref> It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
The order of the multiplicative group of integers modulo Template:Mvar is Template:Math, where Template:Mvar is Euler's totient function. Since the order of an element of a finite group divides the order of the group, Template:Math divides Template:Math. The following table compares the first 36 values of Template:Math (sequence A002322 in the OEIS) and Template:Math (in bold if they are different; the values ofTemplate:Mvar such that they are different are listed in Template:Oeis).
Template:Mvar | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Template:Math | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 2 | 6 | 4 | 10 | 2 | 12 | 6 | 4 | 4 | 16 | 6 | 18 | 4 | 6 | 10 | 22 | 2 | 20 | 12 | 18 | 6 | 28 | 4 | 30 | 8 | 10 | 16 | 12 | 6 |
Template:Math | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 | 8 | 30 | 16 | 20 | 16 | 24 | 12 |
Numerical examplesEdit
- Template:Math. The set of numbers less than and coprime to 5 is Template:Math}. Hence Euler's totient function has value Template:Math and the value of Carmichael's function, Template:Math, must be a divisor of 4. The divisor 1 does not satisfy the definition of Carmichael's function since <math>a^1 \not\equiv 1\pmod{5}</math> except for <math>a\equiv1\pmod{5}</math>. Neither does 2 since <math>2^2 \equiv 3^2 \equiv 4 \not\equiv 1\pmod{5}</math>. Hence Template:Math. Indeed, <math>1^4\equiv 2^4\equiv 3^4\equiv 4^4\equiv1\pmod{5}</math>. Both 2 and 3 are primitive Template:Mvar-roots modulo 5 and also primitive roots modulo 5.
- Template:Math. The set of numbers less than and coprime to 8 is Template:Math. Hence Template:Math and Template:Math must be a divisor of 4. In fact Template:Math since <math>1^2\equiv 3^2\equiv 5^2\equiv 7^2\equiv1\pmod{8}</math>. The primitive Template:Mvar-roots modulo 8 are 3, 5, and 7. There are no primitive roots modulo 8.
Recurrence for Template:MathEdit
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case Template:Mvar of the product is the least common multiple of the Template:Mvar of the prime power factors. Specifically, Template:Math is given by the recurrence
- <math>\lambda(n) = \begin{cases}
\varphi(n) & \text{if }n\text{ is 1, 2, 4, or an odd prime power,}\\ \tfrac12\varphi(n) & \text{if }n=2^r,\ r\ge3,\\ \operatorname{lcm}\Bigl(\lambda(n_1),\lambda(n_2),\ldots,\lambda(n_k)\Bigr) & \text{if }n=n_1n_2\ldots n_k\text{ where }n_1,n_2,\ldots,n_k\text{ are powers of distinct primes.} \end{cases}</math> Euler's totient for a prime power, that is, a number Template:Math with Template:Math prime and Template:Math, is given by
- <math>\varphi(p^r) = p^{r-1}(p-1).</math>
Carmichael's theoremsEdit
Template:Anchor Carmichael proved two theorems that, together, establish that if Template:Math is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer Template:Mvar such that <math>a^m\equiv 1\pmod{n}</math> for all Template:Mvar relatively prime to Template:Mvar. Template:Math theorem This implies that the order of every element of the multiplicative group of integers modulo Template:Mvar divides Template:Math. Carmichael calls an element Template:Mvar for which <math>a^{\lambda(n)}</math> is the least power of Template:Mvar congruent to 1 (mod Template:Mvar) a primitive λ-root modulo n.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo Template:Mvar]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo Template:Mvar.) Template:Math theorem If Template:Mvar is one of the primitive Template:Mvar-roots guaranteed by the theorem, then <math>g^m\equiv1\pmod{n}</math> has no positive integer solutions Template:Mvar less than Template:Math, showing that there is no positive Template:Math such that <math>a^m\equiv 1\pmod{n}</math> for all Template:Mvar relatively prime to Template:Mvar.
The second statement of Theorem 2 does not imply that all primitive Template:Mvar-roots modulo Template:Mvar are congruent to powers of a single root Template:Mvar.<ref>Carmichael (1914) p.56</ref> For example, if Template:Math, then Template:Math while <math>\varphi(n)=8</math> and <math>\varphi(\lambda(n))=2</math>. There are four primitive Template:Mvar-roots modulo 15, namely 2, 7, 8, and 13 as <math>1\equiv2^4\equiv8^4\equiv7^4\equiv13^4</math>. The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies <math>4\equiv2^2\equiv8^2\equiv7^2\equiv13^2</math>), 11, and 14, are not primitive Template:Mvar-roots modulo 15.
For a contrasting example, if Template:Math, then <math>\lambda(n)=\varphi(n)=6</math> and <math>\varphi(\lambda(n))=2</math>. There are two primitive Template:Mvar-roots modulo 9, namely 2 and 5, each of which is congruent to the fifth power of the other. They are also both primitive <math>\varphi</math>-roots modulo 9.
Properties of the Carmichael functionEdit
In this section, an integer <math>n</math> is divisible by a nonzero integer <math>m</math> if there exists an integer <math>k</math> such that <math>n = km</math>. This is written as
- <math>m \mid n.</math>
A consequence of minimality of Template:MathEdit
Suppose Template:Math for all numbers Template:Mvar coprime with Template:Mvar. Then Template:Math.
Proof: If Template:Math with Template:Math, then
- <math>a^r = 1^k \cdot a^r \equiv \left(a^{\lambda(n)}\right)^k\cdot a^r = a^{k\lambda(n)+r} = a^m \equiv 1\pmod{n}</math>
for all numbers Template:Mvar coprime with Template:Mvar. It follows that Template:Math since Template:Math and Template:Math is the minimal positive exponent for which the congruence holds for all Template:Mvar coprime with Template:Mvar.
Template:Math divides Template:MathEdit
This follows from elementary group theory, because the exponent of any finite group must divide the order of the group. Template:Math is the exponent of the multiplicative group of integers modulo Template:Mvar while Template:Math is the order of that group. In particular, the two must be equal in the cases where the multiplicative group is cyclic due to the existence of a primitive root, which is the case for odd prime powers.
We can thus view Carmichael's theorem as a sharpening of Euler's theorem.
DivisibilityEdit
- <math> a\,|\,b \Rightarrow \lambda(a)\,|\,\lambda(b) </math>
Proof.
By definition, for any integer <math>k</math> with <math>\gcd(k,b) = 1</math> (and thus also <math>\gcd(k,a) = 1</math>), we have that <math> b \,|\, (k^{\lambda(b)} - 1)</math> , and therefore <math> a \,|\, (k^{\lambda(b)} - 1)</math>. This establishes that <math>k^{\lambda(b)}\equiv1\pmod{a}</math> for all Template:Mvar relatively prime to Template:Mvar. By the consequence of minimality proved above, we have <math> \lambda(a)\,|\,\lambda(b) </math>.
CompositionEdit
For all positive integers Template:Mvar and Template:Mvar it holds that
- <math>\lambda(\mathrm{lcm}(a,b)) = \mathrm{lcm}(\lambda(a), \lambda(b))</math>.
This is an immediate consequence of the recurrence for the Carmichael function.
Exponential cycle lengthEdit
If <math>r_{\mathrm{max}}=\max_i\{r_i\}</math> is the biggest exponent in the prime factorization <math> n= p_1^{r_1}p_2^{r_2} \cdots p_{k}^{r_k} </math> of Template:Mvar, then for all Template:Mvar (including those not coprime to Template:Mvar) and all Template:Math,
- <math>a^r \equiv a^{\lambda(n)+r} \pmod n.</math>
In particular, for square-free Template:Mvar (Template:Math), for all Template:Mvar we have
- <math>a \equiv a^{\lambda(n)+1} \pmod n.</math>
Average valueEdit
For any Template:Math:<ref>Theorem 3 in Erdős (1991)</ref><ref name=HBII194>Sándor & Crstici (2004) p.194</ref>
- <math>\frac{1}{n} \sum_{i \leq n} \lambda (i) = \frac{n}{\ln n} e^{B (1+o(1)) \ln\ln n / (\ln\ln\ln n) }</math>
(called Erdős approximation in the following) with the constant
- <math>B := e^{-\gamma} \prod_{p\in\mathbb P} \left({1 - \frac{1}{(p-1)^2(p+1)}}\right) \approx 0.34537 </math>
and Template:Math, the Euler–Mascheroni constant.
The following table gives some overview over the first Template:Math values of the Template:Mvar function, for both, the exact average and its Erdős-approximation.
Additionally given is some overview over the more easily accessible Template:Nowrap Template:Math with
There, the table entry in row number 26 at column
- Template:Math Template:Pad → 60.49
indicates that 60.49% (≈ Template:Val) of the integers Template:Math have Template:Math meaning that the majority of the Template:Mvar values is exponential in the length Template:Math of the input Template:Mvar, namely
- <math>\left(2^\frac45\right)^l = 2^\frac{4l}{5} = \left(2^l\right)^\frac45 = n^\frac45.</math>
Template:Mvar Template:Math sum
<math>\sum_{i\le n} \lambda(i) </math>average
<math>\tfrac1n \sum_{i\le n} \lambda(i) </math>Erdős average Erdős /
exact averageTemplate:Math average % Template:Math > Template:Sfrac % Template:Math > Template:Sfrac 5 31 270 8.709677 68.643 7.8813 0.678244 41.94 35.48 6 63 964 15.301587 61.414 4.0136 0.699891 38.10 30.16 7 127 3574 28.141732 86.605 3.0774 0.717291 38.58 27.56 8 255 12994 50.956863 138.190 2.7119 0.730331 38.82 23.53 9 511 48032 93.996086 233.149 2.4804 0.740498 40.90 25.05 10 1023 178816 174.795699 406.145 2.3235 0.748482 41.45 26.98 11 2047 662952 323.865169 722.526 2.2309 0.754886 42.84 27.70 12 4095 2490948 608.290110 1304.810 2.1450 0.761027 43.74 28.11 13 8191 9382764 1145.496765 2383.263 2.0806 0.766571 44.33 28.60 14 16383 35504586 2167.160227 4392.129 2.0267 0.771695 46.10 29.52 15 32767 134736824 4111.967040 8153.054 1.9828 0.776437 47.21 29.15 16 65535 513758796 7839.456718 15225.43Template:0 1.9422 0.781064 49.13 28.17 17 131071 1964413592 14987.40066Template:0 28576.97Template:0 1.9067 0.785401 50.43 29.55 18 262143 7529218208 28721.79768Template:0 53869.76Template:0 1.8756 0.789561 51.17 30.67 19 524287 28935644342 55190.46694Template:0 101930.9Template:0 1.8469 0.793536 52.62 31.45 20 1048575 111393101150 106232.8409Template:0 193507.1Template:0 1.8215 0.797351 53.74 31.83 21 2097151 429685077652 204889.9090Template:0 368427.6Template:0 1.7982 0.801018 54.97 32.18 22 4194303 1660388309120 395867.5158Template:0 703289.4Template:0 1.7766 0.804543 56.24 33.65 23 8388607 6425917227352 766029.1187Template:0 1345633Template:0 1.7566 0.807936 57.19 34.32 24 16777215 24906872655990 1484565.386Template:0 2580070Template:0 1.7379 0.811204 58.49 34.43 25 33554431 96666595865430 2880889.140Template:0 4956372Template:0 1.7204 0.814351 59.52 35.76 26 67108863 375619048086576 5597160.066Template:0 9537863Template:0 1.7041 0.817384 60.49 36.73
Prevailing intervalEdit
For all numbers Template:Mvar and all but Template:Math<ref>Theorem 2 in Erdős (1991) 3. Normal order. (p.365)</ref> positive integers Template:Math (a "prevailing" majority):
- <math>\lambda(n) = \frac{n} {(\ln n)^{\ln\ln\ln n + A + o(1)}}</math>
with the constant<ref name=HBII194/>
- <math>A := -1 + \sum_{p\in\mathbb P} \frac{\ln p}{(p-1)^2} \approx 0.2269688 </math>
Lower boundsEdit
For any sufficiently large number Template:Mvar and for any Template:Math, there are at most
- <math>N\exp\left(-0.69(\Delta\ln\Delta)^\frac13\right)</math>
positive integers Template:Math such that Template:Math.<ref>Theorem 5 in Friedlander (2001)</ref>
Minimal orderEdit
For any sequence Template:Math of positive integers, any constant Template:Math, and any sufficiently large Template:Mvar:<ref name="Theorem 1 in Erdős (1991)">Theorem 1 in Erdős (1991)</ref><ref name=HBII193>Sándor & Crstici (2004) p.193</ref>
- <math>\lambda(n_i) > \left(\ln n_i\right)^{c\ln\ln\ln n_i}.</math>
Small valuesEdit
For a constant Template:Mvar and any sufficiently large positive Template:Mvar, there exists an integer Template:Math such that<ref name=HBII193/>
- <math>\lambda(n)<\left(\ln A\right)^{c\ln\ln\ln A}.</math>
Moreover, Template:Mvar is of the form
- <math>n=\mathop{\prod_{q \in \mathbb P}}_{(q-1)|m}q</math>
for some square-free integer Template:Math.<ref name="Theorem 1 in Erdős (1991)"/>
Image of the functionEdit
The set of values of the Carmichael function has counting function<ref>Template:Cite journal</ref>
- <math>\frac{x}{(\ln x)^{\eta+o(1)}} ,</math>
where
- <math>\eta=1-\frac{1+\ln\ln2}{\ln2} \approx 0.08607</math>
Use in cryptographyEdit
The Carmichael function is important in cryptography due to its use in the RSA encryption algorithm.
Proof of Theorem 1Edit
For Template:Math, a prime, Theorem 1 is equivalent to Fermat's little theorem:
- <math>a^{p-1}\equiv1\pmod{p}\qquad\text{for all }a\text{ coprime to }p.</math>
For prime powers Template:Math, Template:Math, if
- <math>a^{p^{r-1}(p-1)}=1+hp^r</math>
holds for some integer Template:Mvar, then raising both sides to the power Template:Mvar gives
- <math>a^{p^r(p-1)}=1+h'p^{r+1}</math>
for some other integer <math>h'</math>. By induction it follows that <math>a^{\varphi(p^r)}\equiv1\pmod{p^r}</math> for all Template:Mvar relatively prime to Template:Mvar and hence to Template:Math. This establishes the theorem for Template:Math or any odd prime power.
Sharpening the result for higher powers of twoEdit
For Template:Mvar coprime to (powers of) 2 we have Template:Math for some integer Template:Math. Then,
- <math>a^2 = 1+4h_2(h_2+1) = 1+8\binom{h_2+1}{2}=:1+8h_3</math>,
where <math>h_3</math> is an integer. With Template:Math, this is written
- <math>a^{2^{r-2}} = 1+2^r h_r.</math>
Squaring both sides gives
- <math>a^{2^{r-1}}=\left(1+2^r h_r\right)^2=1+2^{r+1}\left(h_r+2^{r-1}h_r^2\right)=:1+2^{r+1}h_{r+1},</math>
where <math>h_{r+1}</math> is an integer. It follows by induction that
- <math>a^{2^{r-2}}=a^{\frac{1}{2}\varphi(2^r)}\equiv 1\pmod{2^r}</math>
for all <math>r\ge3</math> and all Template:Mvar coprime to <math>2^r</math>.<ref>Carmichael (1914) pp.38–39</ref>
Integers with multiple prime factorsEdit
By the unique factorization theorem, any Template:Math can be written in a unique way as
- <math> n= p_1^{r_1}p_2^{r_2} \cdots p_{k}^{r_k} </math>
where Template:Math are primes and Template:Math are positive integers. The results for prime powers establish that, for <math>1\le j\le k</math>,
- <math>a^{\lambda\left(p_j^{r_j}\right)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n\text{ and hence to }p_i^{r_i}.</math>
From this it follows that
- <math>a^{\lambda(n)}\equiv1 \pmod{p_j^{r_j}}\qquad\text{for all }a\text{ coprime to }n,</math>
where, as given by the recurrence,
- <math>\lambda(n) = \operatorname{lcm}\Bigl(\lambda\left(p_1^{r_1}\right),\lambda\left(p_2^{r_2}\right),\ldots,\lambda\left(p_k^{r_k}\right)\Bigr).</math>
From the Chinese remainder theorem one concludes that
- <math>a^{\lambda(n)}\equiv1 \pmod{n}\qquad\text{for all }a\text{ coprime to }n.</math>
See alsoEdit
NotesEdit
<references/>