Template:Short description Template:About

In music theory, a comma is a very small interval, the difference resulting from tuning one note two different ways.<ref>Waldo Selden Pratt (1922). Grove's Dictionary of Music and Musicians, Vol. 1, p. 568. John Alexander Fuller Maitland, Sir George Grove, eds. Macmillan.</ref> Traditionally, there are two most common comma; the syntonic comma, "the difference between a just major 3rd and four just perfect 5ths less two octaves", and the Pythagorean comma, "the difference between twelve 5ths and seven octaves".<ref>Clive Greated (2001). "Comma", Grove Music Online. {{#invoke:doi|main}}</ref> The word comma used without qualification refers to the syntonic comma,<ref>Benson, Dave (2006). Music: A Mathematical Offering, p. 171. Template:ISBN.</ref> which can be defined, for instance, as the difference between an FTemplate:Music tuned using the D-based Pythagorean tuning system, and another FTemplate:Music tuned using the D-based quarter-comma meantone tuning system. Intervals separated by the ratio 81:80 are considered the same note because the 12-note Western chromatic scale does not distinguish Pythagorean intervals from 5-limit intervals in its notation. Other intervals are considered commas because of the enharmonic equivalences of a tuning system. For example, in 53TET, BTemplate:MusicTemplate:Music and ATemplate:Music are both approximated by the same interval although they are a septimal kleisma apart.

EtymologyEdit

Translated in this context, "comma" means "a hair" as in "off by just a hair"Template:Citation needed. The word "comma" came via Latin from Greek [[wikt:κόμμα#Ancient_Greek|Template:Math]], from earlier *Template:Math: "the result or effect of cutting".

DescriptionEdit

Within the same tuning system, two enharmonically equivalent notes (such as GTemplate:Music and ATemplate:Music) may have a slightly different frequency, and the interval between them is a comma. For example, in extended scales produced with five-limit tuning an ATemplate:Music tuned as a major third below C5 and a GTemplate:Music tuned as two major thirds above C4 are not exactly the same note, as they would be in equal temperament. The interval between those notes, the diesis, is an easily audible comma (its size is more than 40% of a semitone).

Commas are often defined as the difference in size between two semitones.Template:Citation needed Each meantone temperament tuning system produces a 12-tone scale characterized by two different kinds of semitones (diatonic and chromatic), and hence by a comma of unique size. The same is true for Pythagorean tuning.

File:Lesser diesis (difference m2-A1).PNG
Lesser diesis defined in quarter-comma meantone as difference between semitones (Template:Nowrap), or interval between enharmonically equivalent notes (from CTemplate:Music to DTemplate:Music). The interval from C to D is narrower than in Pythagorean tuning (see below).File:Enharmonic scale segment on C.mid
File:Pythagorean comma (difference A1-m2).PNG
Pythagorean comma (PC) defined in Pythagorean tuning as difference between semitones (Template:Nowrap), or interval between enharmonically equivalent notes (from DTemplate:Music to CTemplate:Music). The interval from C to D is wider than in quarter-comma meantone (see above).

In just intonation, more than two kinds of semitones may be produced. Thus, a single tuning system may be characterized by several different commas. For instance, a commonly used version of five-limit tuning produces a 12-tone scale with four kinds of semitones and four commas.

The size of commas is commonly expressed and compared in terms of centsTemplate:Frac fractions of an octave on a logarithmic scale.

Commas in different contextsEdit

File:Comma size comparison.png
Comparison of the size of different commas, in cents. Equal-tempered semitone added for comparison. JND is the just-noticeable difference between tones.

In the column below labeled "Difference between semitones", Template:Small2 is the minor second (diatonic semitone), aug1 is the augmented unison (chromatic semitone), and S1, S2, S3, S4 are semitones as defined here. In the columns labeled "Interval 1" and "Interval 2", all intervals are presumed to be tuned in just intonation. Notice that the Pythagorean comma (Template:Mvar𝜋) and the syntonic comma (Template:MvarS) are basic intervals that can be used as yardsticks to define some of the other commas. For instance, the difference between them is a small comma called schisma. A schisma is not audible in many contexts, as its size is narrower than the smallest audible difference between tones (which is around six cents, also known as just-noticeable difference, or JND).

Name of comma Alternative name Definitions Size
Difference between
semitones
Difference between
commas
Difference between Cents Ratio
Interval 1 Interval 2
schisma skhisma aug1 − Template:Small2
in Template:Nobr meantone
1 Template:Mvar𝜋 − 1 Template:MvarS 8 perfect fifths +
major third
5 octaves 1.95 <math>\tfrac{\ 32805\ }{ 32768 }</math>
septimal kleisma 3 major thirds octave
septimal comma
7.71 <math>\tfrac{\ 225\ }{ 224 }</math>
kleisma 6 minor thirds octave +
perfect fifth
("tritave")
8.11 <math>\tfrac{\ 15625\ }{ 15552 }</math>
small undecimal comma<ref>Template:Cite book</ref> neutral second minor tone 17.40 <math>\tfrac{\ 100\ }{ 99 }</math>
diaschisma diaskhisma Template:Small2 − aug1
in Template:Nobr meantone,
S3 − S2
in 5-limit tuning
2 Template:MvarS − 1 Template:Mvar𝜋 3 octaves 4 perfect fifths +
2 major thirds
19.55 <math>\tfrac{\ 2048\ }{ 2025 }</math>
syntonic comma
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
Didymus' comma S2 − S1
in 5 limit tuning
4 perfect fifths 2 octaves +
1 major third
21.51 <math>\tfrac{\ 81\ }{ 80 }</math>
major tone minor tone
[[53 equal temperament|53 Template:Sc]] comma
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
1 step
(in [[53 equal temperament|53 Template:Sc]])
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
Template:Nobr
(in [[53 equal temperament|53 Template:Sc]])
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
Template:Nobr
(in [[53 equal temperament|53 Template:Sc]])
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
major tone
(in [[53 equal temperament|53 Template:Sc]])
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
minor tone
(in [[53 equal temperament|53 Template:Sc]])
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
22.64 <math>\bigl( 2 \bigr)^\tfrac{\ 1\ }{ 53 }</math>
Pythagorean comma
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
ditonic comma aug1 − [[Pythagorean limma|Template:Small2]]
(in Pythagorean tuning)
12 perfect fifths 7 octaves 23.46 <math>\tfrac{\ 531441\ }{ 524288 }</math>
septimal comma<ref name=Rasch/> Archytas' comma
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
minor seventh septimal minor seventh 27.26 <math>\tfrac{\ 64\ }{ 63 }</math>
diesis lesser diesis
diminished second
Template:Small2 − aug1
in [[Quarter-comma meantone|Template:Nobr meantone]],
S3 − S1
in 5 limit tuning
3 Template:MvarS − 1 Template:Mvar𝜋 octave 3 major thirds 41.06 <math>\tfrac{\ 128\ }{ 125 }</math>
undecimal comma<ref name=Rasch>Template:Cite book — Describes difference between 11 limit and 3 limit intervals.</ref><ref>Template:Cite book = Source for 32:33 as difference between 11:16 & 2:3 .</ref> Undecimal quarter-tone undecimal tritone perfect fourth 53.27 <math>\tfrac{\ 33\ }{ 32 }</math>
greater diesis Template:Small2 − aug1
in Template:Nobr meantone,
S4 − S1
in 5 limit tuning
4 Template:MvarS − 1 Template:Mvar𝜋 4 minor thirds octave 62.57 <math>\tfrac{\ 648\ }{ 625 }</math>
tridecimal comma tridecimal third-tone tridecimal tritone perfect fourth 65.34 <math>\tfrac{\ 27\ }{ 26 }</math>

Many other commas have been enumerated and named by microtonalists.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

The syntonic comma has a crucial role in the history of music. It is the amount by which some of the notes produced in Pythagorean tuning were flattened or sharpened to produce just minor and major thirds. In Pythagorean tuning, the only highly consonant intervals were the perfect fifth and its inversion, the perfect fourth. The Pythagorean major third (81:64) and minor third (32:27) were dissonant, and this prevented musicians from freely using triads and chords, forcing them to write music with relatively simple texture. Musicians in late Middle Ages recognized that by slightly tempering the pitch of some notes, the Pythagorean thirds could be made consonant. For instance, if you decrease the frequency of E by a syntonic comma (81:80), C–E (a major third) and E–G (a minor third) become just: C–E is flattened to a just ratio of

<math> \frac{\ 81\ }{ 64 } \cdot \frac{\ 80\ }{ 81 } = \frac{\ 1 \cdot 5\ }{ 4 \cdot 1 } = \frac{\ 5\ }{ 4 }</math>

and at the same time E–G is sharpened to the just ratio of

<math> \frac{ 32 }{\ 27\ } \cdot \frac{ 81 }{\ 80\ } = \frac{ 2 \cdot 3 }{\ 1 \cdot 5\ } = \frac{ 6 }{\ 5\ }</math>

This led to the creation of a new tuning system, known as quarter-comma meantone, which permitted the full development of music with complex texture, such as polyphonic music, or melodies with instrumental accompaniment. Since then, other tuning systems were developed, and the syntonic comma was used as a reference value to temper the perfect fifths throughout the family of syntonic temperaments, including meantone temperaments.

Alternative definitionsEdit

In quarter-comma meantone, and any kind of meantone temperament tuning system that tempers the fifth to a size smaller than 700 cents, the comma is a diminished second, which can be equivalently defined as the difference between:

In Pythagorean tuning, and any kind of meantone temperament tuning system that tempers the fifth to a size larger than 700 cents (such as Template:Nobr meantone), the comma is the opposite of a diminished second, and therefore the opposite of the above-listed differences. More exactly, in these tuning systems the diminished second is a descending interval, while the comma is its ascending opposite. For instance, the Pythagorean comma (531441:524288, or about 23.5 cents) can be computed as the difference between a chromatic and a diatonic semitone, which is the opposite of a Pythagorean diminished second (524288:531441, or about −23.5 cents).

In each of the above-mentioned tuning systems, the above-listed differences have all the same size. For instance, in Pythagorean tuning they are all equal to the opposite of a Pythagorean comma, and in quarter comma meantone they are all equal to a diesis.

NotationEdit

In the years 2000–2004, Marc Sabat and Wolfgang von Schweinitz worked together in Berlin to develop a method to exactly indicate pitches in staff notation. This method was called the extended Helmholtz-Ellis JI pitch notation.<ref>see article "The Extended Helmholtz-Ellis JI Pitch Notation: eine Notationsmetode für dienatürlichen Intervalle" in Mikrotöne und mehr – Auf György Ligetis Hamburger Pfaden, ed. Manfred Stahnke, von Bockel Verlag, Hamburg 2005 Template:ISBN</ref> Sabat and Schweinitz take the "conventional" flats, naturals and sharps as a Pythagorean series of perfect fifths. Thus, a series of perfect fifths beginning with F proceeds Template:Nowrap and so on. The advantage for musicians is that conventional reading of the basic fourths and fifths remains familiar. Such an approach has also been advocated by Daniel James Wolf and by Joe Monzo, who refers to it by the acronym HEWM (Helmholtz-Ellis-Wolf-Monzo).<ref>Tonalsoft Encyclopaedia article about 'HEWM' notation</ref> In the Sabat-Schweinitz design, syntonic commas are marked by arrows attached to the flat, natural or sharp sign, septimal commas using Giuseppe Tartini's symbol, and undecimal quartertones using the common practice quartertone signs (a single cross and backwards flat). For higher primes, additional signs have been designed. To facilitate quick estimation of pitches, cents indications may be added (downward deviations below and upward deviations above the respective accidental). The convention used is that the cents written refer to the tempered pitch implied by the flat, natural, or sharp sign and the note name. One of the great advantages of any such a notation is that it allows the natural harmonic series to be precisely notated. A complete legend and fonts for the notation (see samples) are open source and available from Plainsound Music Edition.Template:Full citation needed Thus a Pythagorean scale is Template:Nowrap, while a just scale is Template:Nowrap.

Composer Ben Johnston uses a "−" as an accidental to indicate a note is lowered a syntonic comma, or a "+" to indicate a note is raised a syntonic comma;<ref name="Fonville">John Fonville. "Ben Johnston's Extended Just Intonation – A Guide for Interpreters", p. 109, Perspectives of New Music, vol. 29, no. 2 (Summer 1991), pp. 106–137. and Johnston, Ben and Gilmore, Bob (2006). "A Notation System for Extended Just Intonation" (2003), "Maximum clarity" and Other Writings on Music, p. 78. Template:ISBN</ref> however, Johnston's "basic scale" (the plain nominals Template:Nowrap) is tuned to just-intonation and thus already includes the syntonic comma. Thus a Pythagorean scale is Template:Nowrap, while a just scale is Template:Nowrap.

Tempering of commasEdit

Commas are frequently used in the description of musical temperaments, where they describe distinctions between musical intervals that are eliminated by that tuning system. A comma can be viewed as the distance between two musical intervals. When a given comma is tempered out in a tuning system, the ability to distinguish between those two intervals in that tuning is eliminated. For example, the difference between the diatonic semitone and chromatic semitone is called the diesis. The widely used 12 tone equal temperament tempers out the diesis, and thus does not distinguish between the two different types of semitones. On the other hand, 19 tone equal temperament does not temper out this comma, and thus it distinguishes between the two semitones.

Examples:

The following table lists the number of steps used that correspond various just intervals in various tuning systems. Zeros indicate that the interval is a comma (i.e. is tempered out) in that particular equal temperament.Template:Clarify All of the frequency ratios in the first column are linked to their wikipedia article.

Interval
Template:Small
[[5 equal temperament|5 Template:Sc]] [[7 equal temperament|7 Template:Sc]] [[12 equal temperament|12 Template:Sc]] [[19 equal temperament|19 Template:Sc]] [[22 equal temperament|22 Template:Sc]] [[31 equal temperament|31 Template:Sc]] [[34 equal temperament|34 Template:Sc]] [[41 equal temperament|41 Template:Sc]] [[53 equal temperament|53 Template:Sc]] [[72 equal temperament|72 Template:Sc]]
 <math>\tfrac{\ 2\ }{ 1 }</math>  5 7 12 19 22 31 34 41 53 72
 <math>\tfrac{\ 15\ }{ 8 }</math>  5 6 11 17 20 28 31 37 48 65
 <math>\tfrac{\ 9\ }{ 5 }</math>  4 6 10 16 19 26 29 35 45 61
 <math>\tfrac{\ 7\ }{ 4 }</math>  4 6 10 15 18 25 28 33 43 58
 <math>\tfrac{\ 5\ }{ 3 }</math>  4 5 9 14 16 23 25 30 39 53
 <math>\tfrac{\ 8\ }{ 5 }</math>  3 5 8 13 15 21 23 28 36 49
 <math>\tfrac{\ 3\ }{ 2 }</math>  3 4 7 11 13 18 20 24 31 42
 <math>\tfrac{\ 10\ }{ 7 }</math>  3 3 6 10 11 16 17 21 27 37
 <math>\tfrac{\ 64\ }{ 45 }</math>  2 4 6 10 11 16 17 21 27 37
 <math>\tfrac{\ 45\ }{ 32 }</math>  3 3 6 9 11 15 17 20 26 35
 <math>\tfrac{\ 7\ }{ 5 }</math>  2 4 6 9 11 15 17 20 26 35
 <math>\tfrac{\ 4\ }{ 3 }</math>  2 3 5 8 9 13 14 17 22 30
 <math>\tfrac{\ 9\ }{ 7 }</math>  2 2 4 7 8 11 12 15 19 26
 <math>\tfrac{\ 5\ }{ 4 }</math>  2 2 4 6 7 10 11 13 17 23
 <math>\tfrac{\ 6\ }{ 5 }</math>  1 2 3 5 6 8 9 11 14 19
 <math>\tfrac{\ 7\ }{ 6 }</math>  1 2 3 4 5 7 8 9 12 16
 <math>\tfrac{\ 8\ }{ 7 }</math>  1 1 2 4 4 6 6 8 10 14
 <math>\tfrac{\ 9\ }{ 8 }</math>  1 1 2 3 4 5 6 7 9 12
 <math>\tfrac{\ 10\ }{ 9 }</math>  1 1 2 3 3 5 5 6 8 11
 <math>\tfrac{\ 27\ }{ 25 }</math>  0 1 1 2 3 3 4 5 6 8
 <math>\tfrac{\ 15\ }{ 14 }</math>  1 0 1 2 2 3 3 4 5 7
 <math>\tfrac{\ 16\ }{ 15 }</math>  0 1 1 2 2 3 3 4 5 7
 <math>\tfrac{\ 21\ }{ 20 }</math>  0 1 1 1 2 2 3 3 4 5
 <math>\tfrac{\ 25\ }{ 24 }</math>  1 0 1 1 1 2 2 2 3 4
 <math>\tfrac{\ 648\ }{ 625 }</math>  −1 1 0 1 2 1 2 3 3 4
 <math>\tfrac{\ 28\ }{ 27 }</math>  0 1 1 1 1 2 2 2 3 4
 <math>\tfrac{\ 36\ }{ 35 }</math>  0 0 0 1 1 1 1 2 2 3
 <math>\tfrac{\ 128\ }{ 125 }</math>  −1 1 0 1 1 1 1 2 2 3
 <math>\tfrac{\ 49\ }{ 48 }</math>  0 1 1 0 1 1 2 1 2 2
 <math>\tfrac{\ 50\ }{ 49 }</math>  1 −1 0 1 0 1 0 1 1 2
 <math>\tfrac{\ 64\ }{ 63 }</math>  0 0 0 1 0 1 0 1 1 2
 <math>\tfrac{\ 531441\ }{ 524288 }</math>  1 −1 0 −1 2 −1 2 1 1 0
 <math>\tfrac{\ 81\ }{ 80 }</math>  0 0 0 0 1 0 1 1 1 1
 <math>\tfrac{\ 2048\ }{ 2025 }</math>  −1 1 0 1 0 1 0 1 1 2
 <math>\tfrac{\ 126\ }{ 125 }</math>  −1 1 0 0 1 0 1 1 1 1
 <math>\tfrac{\ 1728\ }{ 1715 }</math>  0 −1 −1 1 0 0 −1 1 0 1
Template:Nobr 3 −2 1 −1 0 0 1 −1 0 −1
 <math>\tfrac{\ 15625\ }{ 15552 }</math>  2 −1 1 0 −1 1 0 −1 0 0
 <math>\tfrac{\ 225\ }{ 224 }</math>  1 −1 0 0 0 0 0 0 0 0
 <math>\tfrac{\ 32805\ }{ 32768 }</math>  1 −1 0 −1 1 −1 1 0 0 −1
 <math>\tfrac{\ 2401\ }{ 2400 }</math>  −1 2 1 −1 1 0 2 0 1 0
 <math>\tfrac{\ 4375\ }{ 4374 }</math>  −1 0 −1 0 1 −1 0 1 0 0

The comma can also be considered to be the fractional interval that remains after a "full circle" of some repeated chosen interval; the repeated intervals are all the same size, in relative pitch, and all the tones produced are reduced or raised by whole octaves back to the octave surrounding the starting pitch. The Pythagorean comma, for instance, is the difference obtained, say, between ATemplate:Music and GTemplate:Music after a circle of twelve just fifths. A circle of three just major thirds, such as Template:Nobr produces the small diesis Template:Sfrac (41.1 cent) between GTemplate:Sharp and ATemplate:Music. A circle of four just minor thirds, such as Template:Nobr produces an interval of Template:Sfrac between ATemplate:Music and GTemplate:Music, etc. An interesting property of temperaments is that this difference remains whatever the tuning of the intervals forming the circle.<ref> Template:Cite book </ref> In this sense, commas and similar minute intervals can never be completely tempered out, whatever the tuning.

Comma sequenceEdit

A comma sequence defines a musical temperament through a unique sequence of commas at increasing prime limits.<ref> {{#invoke:citation/CS1|citation |CitationClass=web }} </ref> The first comma of the comma sequence is in the Template:Mvar-limit, where Template:Mvar is the Template:Mvar‑th odd prime (prime 2 being ignored because it represents the octave) and Template:Mvar is the number of generators. Subsequent commas are in prime limits, each the next prime in sequence above the last.

Other intervals called commasEdit

There are also several intervals called commas, which are not technically commas because they are not rational fractions like those above, but are irrational approximations of them. These include the Holdrian and Mercator's commas,<ref> {{#invoke:citation/CS1|citation |CitationClass=web }} </ref> and the pitch-to-pitch step size in Template:Nobr.

See alsoEdit

ReferencesEdit

Template:Reflist

Template:Intervals