Template:Redirect Template:Short description

File:Divisor.svg
Divisor function σ0(n) up to n = 250
File:Sigma function.svg
Sigma function σ1(n) up to n = 250
File:Divisor square.svg
Sum of the squares of divisors, σ2(n), up to n = 250
File:Divisor cube.svg
Sum of cubes of divisors, σ3(n) up to n = 250

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.

DefinitionEdit

The sum of positive divisors function σz(n), for a real or complex number z, is defined as the sum of the zth powers of the positive divisors of n. It can be expressed in sigma notation as

<math>\sigma_z(n)=\sum_{d\mid n} d^z\,\! ,</math>

where <math>{d\mid n}</math> is shorthand for "d divides n". The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ0(n), or the number-of-divisors function<ref name="Long 1972 46">Template:Harvtxt</ref><ref>Template:Harvtxt</ref> (Template:OEIS2C). When z is 1, the function is called the sigma function or sum-of-divisors function,<ref name="Long 1972 46"/><ref>Template:Harvtxt</ref> and the subscript is often omitted, so σ(n) is the same as σ1(n) (Template:OEIS2C).

The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, Template:OEIS2C), and equals σ1(n) − n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.

ExampleEdit

For example, σ0(12) is the number of the divisors of 12:

<math>

\begin{align} \sigma_0(12) & = 1^0 + 2^0 + 3^0 + 4^0 + 6^0 + 12^0 \\ & = 1 + 1 + 1 + 1 + 1 + 1 = 6, \end{align} </math>

while σ1(12) is the sum of all the divisors:

<math>

\begin{align} \sigma_1(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 + 12^1 \\ & = 1 + 2 + 3 + 4 + 6 + 12 = 28, \end{align} </math>

and the aliquot sum s(12) of proper divisors is:

<math>

\begin{align} s(12) & = 1^1 + 2^1 + 3^1 + 4^1 + 6^1 \\ & = 1 + 2 + 3 + 4 + 6 = 16. \end{align} </math>

σ−1(n) is sometimes called the abundancy index of n, and we have:

<math>

\begin{align} \sigma_{-1}(12) & = 1^{-1} + 2^{-1} + 3^{-1} + 4^{-1} + 6^{-1} + 12^{-1} \\[6pt] & = \tfrac11 + \tfrac12 + \tfrac13 + \tfrac14 + \tfrac16 + \tfrac1{12} \\[6pt] & = \tfrac{12}{12} + \tfrac6{12} + \tfrac4{12} + \tfrac3{12} + \tfrac2{12} + \tfrac1{12} \\[6pt] & = \tfrac{12 + 6 + 4 + 3 + 2 + 1}{12} = \tfrac{28}{12} = \tfrac73 = \tfrac{\sigma_1(12)}{12} \end{align} </math>

Table of valuesEdit

The cases x = 2 to 5 are listed in Template:OEIS2C through Template:OEIS2C, x = 6 to 24 are listed in Template:OEIS2C through Template:OEIS2C.

n prime factorization Template:Sigma0(n) Template:Sigma1(n) Template:Sigma2(n) Template:Sigma3(n) Template:Sigma4(n)
1 1 1 1 1 1 1
2 2 2 3 5 9 17
3 3 2 4 10 28 82
4 22 3 7 21 73 273
5 5 2 6 26 126 626
6 2×3 4 12 50 252 1394
7 7 2 8 50 344 2402
8 23 4 15 85 585 4369
9 32 3 13 91 757 6643
10 2×5 4 18 130 1134 10642
11 11 2 12 122 1332 14642
12 22×3 6 28 210 2044 22386
13 13 2 14 170 2198 28562
14 2×7 4 24 250 3096 40834
15 3×5 4 24 260 3528 51332
16 24 5 31 341 4681 69905
17 17 2 18 290 4914 83522
18 2×32 6 39 455 6813 112931
19 19 2 20 362 6860 130322
20 22×5 6 42 546 9198 170898
21 3×7 4 32 500 9632 196964
22 2×11 4 36 610 11988 248914
23 23 2 24 530 12168 279842
24 23×3 8 60 850 16380 358258
25 52 3 31 651 15751 391251
26 2×13 4 42 850 19782 485554
27 33 4 40 820 20440 538084
28 22×7 6 56 1050 25112 655746
29 29 2 30 842 24390 707282
30 2×3×5 8 72 1300 31752 872644
31 31 2 32 962 29792 923522
32 25 6 63 1365 37449 1118481
33 3×11 4 48 1220 37296 1200644
34 2×17 4 54 1450 44226 1419874
35 5×7 4 48 1300 43344 1503652
36 22×32 9 91 1911 55261 1813539
37 37 2 38 1370 50654 1874162
38 2×19 4 60 1810 61740 2215474
39 3×13 4 56 1700 61544 2342084
40 23×5 8 90 2210 73710 2734994
41 41 2 42 1682 68922 2825762
42 2×3×7 8 96 2500 86688 3348388
43 43 2 44 1850 79508 3418802
44 22×11 6 84 2562 97236 3997266
45 32×5 6 78 2366 95382 4158518
46 2×23 4 72 2650 109512 4757314
47 47 2 48 2210 103824 4879682
48 24×3 10 124 3410 131068 5732210
49 72 3 57 2451 117993 5767203
50 2×52 6 93 3255 141759 6651267

PropertiesEdit

Formulas at prime powersEdit

For a prime number p,

<math>\begin{align}

\sigma_0(p) & = 2 \\ \sigma_0(p^n) & = n+1 \\ \sigma_1(p) & = p+1 \end{align}</math>

because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,

<math> \sigma_0(p_n\#) = 2^n </math>

since n prime factors allow a sequence of binary selection (<math>p_{i}</math> or 1) from n terms for each proper divisor formed. However, these are not in general the smallest numbers whose number of divisors is a power of two; instead, the smallest such number may be obtained by multiplying together the first n Fermi–Dirac primes, prime powers whose exponent is a power of two.<ref>Template:Citation; see section 47, pp. 405–406, reproduced in Collected Papers of Srinivasa Ramanujan, Cambridge Univ. Press, 2015, pp. 124–125</ref>

Clearly, <math>1 < \sigma_0(n) < n</math> for all <math>n > 2</math>, and <math>\sigma_x(n) > n </math> for all <math>n > 1</math>, <math>x > 0</math> .

The divisor function is multiplicative (since each divisor c of the product mn with <math>\gcd(m, n) = 1</math> distinctively correspond to a divisor a of m and a divisor b of n), but not completely multiplicative:

<math>\gcd(a, b)=1 \Longrightarrow \sigma_x(ab)=\sigma_x(a)\sigma_x(b).</math>

The consequence of this is that, if we write

<math>n = \prod_{i=1}^r p_i^{a_i}</math>

where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have: Template:Sfnp

<math>\sigma_x(n) = \prod_{i=1}^r \sum_{j=0}^{a_i} p_i^{j x} = \prod_{i=1}^r \left (1 + p_i^x + p_i^{2x} + \cdots + p_i^{a_i x} \right ).</math>

which, when x ≠ 0, is equivalent to the useful formula: Template:Sfnp

<math>\sigma_x(n) = \prod_{i=1}^{r} \frac{p_{i}^{(a_{i}+1)x}-1}{p_{i}^x-1}.</math>

When x = 0, <math>\sigma_0(n)</math> is: Template:Sfnp

<math>\sigma_0(n)=\prod_{i=1}^r (a_i+1).</math>

This result can be directly deduced from the fact that all divisors of <math>n</math> are uniquely determined by the distinct tuples <math>(x_1, x_2, ..., x_i, ..., x_r)</math> of integers with <math>0 \le x_i \le a_i</math> (i.e. <math>a_i+1</math> independent choices for each <math>x_i</math>).

For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate <math>\sigma_0(24)</math> as so:

<math>\sigma_0(24) = \prod_{i=1}^{2} (a_i+1) = (3 + 1)(1 + 1) = 4 \cdot 2 = 8.</math>

The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.

Other properties and identitiesEdit

Euler proved the remarkable recurrence:<ref>Template:Cite arXiv</ref><ref>https://scholarlycommons.pacific.edu/euler-works/175/, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs</ref><ref>https://scholarlycommons.pacific.edu/euler-works/542/, De mirabilis proprietatibus numerorum pentagonalium</ref>

<math>\begin{align}

\sigma_1(n) &= \sigma_1(n-1)+\sigma_1(n-2)-\sigma_1(n-5)-\sigma_1(n-7)+\sigma_1(n-12)+\sigma_1(n-15)+ \cdots \\[12mu]

&= \sum_{i\in\N} (-1)^{i+1}\left( \sigma_1 \left( n-\frac{1}{2} \left( 3i^2-i \right) \right) + \sigma_1 \left( n-\frac{1}{2} \left( 3i^2+i \right) \right) \right),

\end{align}</math>

where <math>\sigma_1(0)=n</math> if it occurs and <math>\sigma_1(x)=0</math> for <math>x < 0</math>, and <math>\tfrac{1}{2} \left( 3i^2 \mp i \right)</math> are consecutive pairs of generalized pentagonal numbers (Template:OEIS2C, starting at offset 1). Indeed, Euler proved this by logarithmic differentiation of the identity in his pentagonal number theorem.

For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and <math>\sigma_{0}(n)</math> is even; for a square integer, one divisor (namely <math>\sqrt n</math>) is not paired with a distinct divisor and <math>\sigma_{0}(n)</math> is odd. Similarly, the number <math>\sigma_{1}(n)</math> is odd if and only if n is a square or twice a square.Template:Sfnp

We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers, which are the n such that s(n) = n. If s(n) > n, then n is an abundant number, and if s(n) < n, then n is a deficient number.

If Template:Mvar is a power of 2, <math>n = 2^k</math>, then <math>\sigma(n) = 2 \cdot 2^k - 1 = 2n - 1</math> and <math>s(n) = n - 1</math>, which makes n almost-perfect.

As an example, for two primes <math>p,q:p<q</math>, let

<math>n = p\,q</math>.

Then

<math>\sigma(n) = (p+1)(q+1) = n + 1 + (p+q), </math>
<math>\varphi(n) = (p-1)(q-1) = n + 1 - (p+q), </math>

and

<math>n + 1 = (\sigma(n) + \varphi(n))/2, </math>
<math>p + q = (\sigma(n) - \varphi(n))/2, </math>

where <math>\varphi(n)</math> is Euler's totient function.

Then, the roots of

<math>(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \varphi(n))/2]x + [(\sigma(n) + \varphi(n))/2 - 1] = 0 </math>

express p and q in terms of σ(n) and φ(n) only, requiring no knowledge of n or <math>p+q</math>, as

<math>p = (\sigma(n) - \varphi(n))/4 - \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}, </math>
<math>q = (\sigma(n) - \varphi(n))/4 + \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}. </math>

Also, knowing Template:Mvar and either <math>\sigma(n)</math> or <math>\varphi(n)</math>, or, alternatively, <math>p+q</math> and either <math>\sigma(n)</math> or <math>\varphi(n)</math> allows an easy recovery of p and q.

In 1984, Roger Heath-Brown proved that the equality

<math>\sigma_0(n) = \sigma_0(n + 1)</math>

is true for infinitely many values of Template:Mvar, see Template:OEIS2C.

Dirichlet convolutionsEdit

Template:Main article By definition:<math display="block">\sigma = \operatorname{Id} * \mathbf 1</math>By Möbius inversion:<math display="block">\operatorname{Id} = \sigma * \mu </math>

Series relationsEdit

Two Dirichlet series involving the divisor function are: Template:Sfnp

<math>\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a)\quad\text{for}\quad s>1,s>a+1,</math>

where <math>\zeta</math> is the Riemann zeta function. The series for d(n) = σ0(n) gives: Template:Sfnp

<math>\sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s)\quad\text{for}\quad s>1,</math>

and a Ramanujan identityTemplate:Sfnp

<math>\sum_{n=1}^\infty \frac{\sigma_a(n)\sigma_b(n)}{n^s} = \frac{\zeta(s) \zeta(s-a) \zeta(s-b) \zeta(s-a-b)}{\zeta(2s-a-b)},</math>

which is a special case of the Rankin–Selberg convolution.

A Lambert series involving the divisor function is: Template:Sfnp

<math>\sum_{n=1}^\infty q^n \sigma_a(n) = \sum_{n=1}^\infty \sum_{j=1}^\infty n^a q^{j\,n} = \sum_{n=1}^\infty \frac{n^a q^n}{1-q^n} = \sum_{n=1}^\infty \operatorname{Li}_{-a}(q^n)</math>

for arbitrary complex |q| ≤ 1 and a (<math>\operatorname{Li}</math> is the polylogarithm). This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.

For <math>k>0</math>, there is an explicit series representation with Ramanujan sums <math> c_m(n) </math> as :<ref>Template:Cite book (German)</ref>

<math>\sigma_k(n) = \zeta(k+1)n^k\sum_{m=1}^\infty \frac {c_m(n)}{m^{k+1}}.</math>

The computation of the first terms of <math>c_m(n)</math> shows its oscillations around the "average value" <math>\zeta(k+1)n^k</math>:

<math>\sigma_k(n) = \zeta(k+1)n^k \left[ 1 + \frac{(-1)^n}{2^{k+1}} + \frac{2\cos\frac {2\pi n}{3}}{3^{k+1}} + \frac{2\cos\frac {\pi n}{2}}{4^{k+1}} + \cdots\right]</math>

Growth rateEdit

In little-o notation, the divisor function satisfies the inequality:Template:SfnpTemplate:Sfnp

<math>\mbox{for all }\varepsilon>0,\quad d(n)=o(n^\varepsilon).</math>

More precisely, Severin Wigert showed that:Template:Sfnp

<math>\limsup_{n\to\infty}\frac{\log d(n)}{\log n/\log\log n}=\log2.</math>

On the other hand, since there are infinitely many prime numbers,Template:Sfnp

<math>\liminf_{n\to\infty} d(n)=2.</math>

In Big-O notation, Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality:Template:SfnpTemplate:Sfnp

<math>\mbox{for all } x\geq1, \sum_{n\leq x}d(n)=x\log x+(2\gamma-1)x+O(\sqrt{x}),</math>

where <math>\gamma</math> is Euler's gamma constant. Improving the bound <math>O(\sqrt{x})</math> in this formula is known as Dirichlet's divisor problem.

Template:Anchor

The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by: Template:Sfnp

<math>

\limsup_{n\rightarrow\infty}\frac{\sigma(n)}{n\,\log \log n}=e^\gamma, </math>

where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 Template:Harv. His proof uses Mertens' third theorem, which says that:

<math>\lim_{n\to\infty}\frac{1}{\log n}\prod_{p\le n}\frac{p}{p-1}=e^\gamma,</math>

where p denotes a prime.

In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, Robin's inequality

<math>\ \sigma(n) < e^\gamma n \log \log n </math> (where γ is the Euler–Mascheroni constant)

holds for all sufficiently large n Template:Harv. The largest known value that violates the inequality is n=5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if the Riemann hypothesis is true Template:Harv. This is Robin's theorem and the inequality became known after him. Robin furthermore showed that if the Riemann hypothesis is false then there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n > 5040 must be superabundant Template:Harv. It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime Template:Harv.

Robin also proved, unconditionally, that the inequality:

<math>\ \sigma(n) < e^\gamma n \log \log n + \frac{0.6483\ n}{\log \log n}</math>

holds for all n ≥ 3.

A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:

<math> \sigma(n) < H_n + e^{H_n}\log(H_n)</math>

for every natural number n > 1, where <math>H_n</math> is the nth harmonic number, Template:Harv.

See alsoEdit

NotesEdit

Template:Reflist

ReferencesEdit

External linksEdit

Template:Divisor classes