Template:Short description Template:About Template:Distinguish

Template:Probability distribution{(d_1 x+d_2)^{d_1+d_2}}}}{x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!</math> | cdf = <math>I_{\frac{d_1 x}{d_1 x + d_2}} \left(\tfrac{d_1}{2}, \tfrac{d_2}{2} \right)</math> | mean = <math>\frac{d_2}{d_2-2}\!</math>
for d2 > 2 | median = | mode = <math>\frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}</math>
for d1 > 2 | variance = <math>\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!</math>
for d2 > 4 | skewness = <math>\frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!</math>
for d2 > 6 | kurtosis = see text | entropy = <math>\begin{align} & \ln \Gamma{\left(\tfrac{d_1}{2} \right)}

+ \ln \Gamma{\left(\tfrac{d_2}{2} \right)}
- \ln \Gamma{\left(\tfrac{d_1+d_2}{2} \right)} \\

&+ \left(1-\tfrac{d_1}{2} \right) \psi{\left(1+\tfrac{d_1}{2} \right)}

- \left(1+\tfrac{d_2}{2} \right) \psi{\left(1+\tfrac{d_2}{2} \right)} \\

&+ \left(\tfrac{d_1 + d_2}{2} \right) \psi{\left(\tfrac{d_1 + d_2}{2} \right)}

+ \ln \frac{d_2}{d_1}

\end{align}</math><ref name=lazo1978entropy>Template:Cite journal</ref> | mgf = does not exist, raw moments defined in text and in <ref name=johnson /><ref name=abramowitz /> | char = see text }}

In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.<ref name=johnson>Template:Cite book</ref><ref name=abramowitz>Template:Abramowitz Stegun ref</ref><ref>NIST (2006). Engineering Statistics Handbook – F Distribution</ref><ref>Template:Cite book</ref>

DefinitionsEdit

The F-distribution with d1 and d2 degrees of freedom is the distribution of

<math display="block"> X = \frac{U_1/d_1}{U_2/d_2} </math>

where <math display=inline>U_1</math> and <math display=inline>U_2</math> are independent random variables with chi-square distributions with respective degrees of freedom <math display=inline>d_1</math> and <math display=inline>d_2</math>.

It can be shown to follow that the probability density function (pdf) for X is given by

<math display="block">\begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1x)^{d_1}\,\,d_2^{d_2}} {(d_1x+d_2)^{d_1+d_2}}}} {x\operatorname{B}\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\[5pt] &=\frac{1}{\operatorname{B}\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2} \, x \right)^{-\frac{d_1+d_2}{2}} \end{align}</math>

for real x > 0. Here <math>\mathrm{B}</math> is the beta function. In many applications, the parameters d1 and d2 are positive integers, but the distribution is well-defined for positive real values of these parameters.

The cumulative distribution function is

<math display="block">F(x; d_1,d_2)=I_{d_1 x/(d_1 x + d_2)}\left (\tfrac{d_1}{2}, \tfrac{d_2}{2} \right) ,</math>

where I is the regularized incomplete beta function.

PropertiesEdit

The expectation, variance, and other details about the F(d1, d2) are given in the sidebox; for d2 > 8, the excess kurtosis is

<math display="block">\gamma_2 = 12\frac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}.</math>

The k-th moment of an F(d1, d2) distribution exists and is finite only when 2k < d2 and it is equal to<ref name=taboga>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

<math display="block">\mu _X(k) =\left( \frac{d_2}{d_1}\right)^k \frac{\Gamma \left(\tfrac{d_1}{2}+k\right) }{\Gamma \left(\tfrac{d_1}{2}\right)} \frac{\Gamma \left(\tfrac{d_2}{2}-k\right) }{\Gamma \left( \tfrac{d_2}{2}\right) }.</math>

The F-distribution is a particular parametrization of the beta prime distribution, which is also called the beta distribution of the second kind.

The characteristic function is listed incorrectly in many standard references (e.g.,<ref name=abramowitz />). The correct expression <ref>Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," Biometrika, 69: 261–264 Template:JSTOR</ref> is

<math display="block">\varphi^F_{d_1, d_2}(s) = \frac{\Gamma{\left(\frac{d_1+d_2}{2}\right)}}{\Gamma{\left(\tfrac{d_2}{2}\right)}} U \! \left(\frac{d_1}{2},1-\frac{d_2}{2},-\frac{d_2}{d_1} \imath s \right)</math>

where U(a, b, z) is the confluent hypergeometric function of the second kind.

Related distributionsEdit

Relation to the chi-squared distributionEdit

In instances where the F-distribution is used, for example in the analysis of variance, independence of <math>U_1</math> and <math>U_2</math> (defined above) might be demonstrated by applying Cochran's theorem.

Equivalently, since the chi-squared distribution is the sum of squares of independent standard normal random variables, the random variable of the F-distribution may also be written

<math display="block">X = \frac{s_1^2}{\sigma_1^2} \div \frac{s_2^2}{\sigma_2^2},</math>

where <math>s_1^2 = \frac{S_1^2}{d_1}</math> and <math>s_2^2 = \frac{S_2^2}{d_2}</math>, <math>S_1^2</math> is the sum of squares of <math>d_1</math> random variables from normal distribution <math>N(0,\sigma_1^2)</math> and <math>S_2^2</math> is the sum of squares of <math>d_2</math> random variables from normal distribution <math>N(0,\sigma_2^2)</math>.

In a frequentist context, a scaled F-distribution therefore gives the probability <math>p(s_1^2/s_2^2 \mid \sigma_1^2, \sigma_2^2)</math>, with the F-distribution itself, without any scaling, applying where <math>\sigma_1^2</math> is being taken equal to <math>\sigma_2^2</math>. This is the context in which the F-distribution most generally appears in F-tests: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis.

The quantity <math>X</math> has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant Jeffreys prior is taken for the prior probabilities of <math>\sigma_1^2</math> and <math>\sigma_2^2</math>.<ref>Template:Cite book</ref> In this context, a scaled F-distribution thus gives the posterior probability <math>p(\sigma^2_2 /\sigma_1^2 \mid s^2_1, s^2_2)</math>, where the observed sums <math>s^2_1</math> and <math>s^2_2</math> are now taken as known.

In generalEdit

  • If <math>X \sim \chi^2_{d_1}</math> and <math>Y \sim \chi^2_{d_2}</math> (Chi squared distribution) are independent, then <math> \frac{X / d_1}{Y / d_2} \sim \mathrm{F}(d_1, d_2)</math>
  • If <math>X_k \sim \Gamma(\alpha_k,\beta_k)\,</math> (Gamma distribution) are independent, then <math> \frac{\alpha_2\beta_1 X_1}{\alpha_1\beta_2 X_2} \sim \mathrm{F}(2\alpha_1, 2\alpha_2)</math>
  • If <math>X \sim \operatorname{Beta}(d_1/2,d_2/2)</math> (Beta distribution) then <math>\frac{d_2 X}{d_1(1-X)} \sim \operatorname{F}(d_1,d_2)</math>
  • Equivalently, if <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1 X/d_2}{1+d_1 X/d_2} \sim \operatorname{Beta}(d_1/2,d_2/2)</math>.
  • If <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1}{d_2}X</math> has a beta prime distribution: <math>\frac{d_1}{d_2}X \sim \operatorname{\beta^\prime}\left(\tfrac{d_1}{2},\tfrac{d_2}{2}\right)</math>.
  • If <math>X \sim F(d_1, d_2)</math> then <math>Y = \lim_{d_2 \to \infty} d_1 X</math> has the chi-squared distribution <math>\chi^2_{d_1}</math>
  • <math>F(d_1, d_2)</math> is equivalent to the scaled Hotelling's T-squared distribution <math>\frac{d_2}{d_1(d_1+d_2-1)} \operatorname{T}^2 (d_1, d_1 +d_2-1) </math>.
  • If <math>X \sim F(d_1, d_2)</math> then <math>X^{-1} \sim F(d_2, d_1)</math>.
  • If <math>X\sim t_{(n)}</math> — Student's t-distribution — then: <math display="block">\begin{align}

X^{2} &\sim \operatorname{F}(1, n) \\ X^{-2} &\sim \operatorname{F}(n, 1) \end{align}</math>

  • F-distribution is a special case of type 6 Pearson distribution
  • If <math>X</math> and <math>Y</math> are independent, with <math>X,Y\sim</math> Laplace(μ, b) then <math display="block"> \frac{|X-\mu|}{|Y-\mu|} \sim \operatorname{F}(2,2) </math>
  • If <math>X\sim F(n,m)</math> then <math>\tfrac{\log{X}}{2} \sim \operatorname{FisherZ}(n,m)</math> (Fisher's z-distribution)
  • The noncentral F-distribution simplifies to the F-distribution if <math>\lambda=0</math>.
  • The doubly noncentral F-distribution simplifies to the F-distribution if <math> \lambda_1 = \lambda_2 = 0 </math>
  • If <math>\operatorname{Q}_X(p)</math> is the quantile p for <math>X\sim F(d_1,d_2)</math> and <math>\operatorname{Q}_Y(1-p)</math> is the quantile <math>1-p</math> for <math>Y\sim F(d_2,d_1)</math>, then <math display="block">\operatorname{Q}_X(p)=\frac{1}{\operatorname{Q}_Y(1-p)}.</math>
  • F-distribution is an instance of ratio distributions
  • W-distribution<ref>Template:Cite journal</ref> is a unique parametrization of F-distribution.

See alsoEdit

Template:Colbegin

Template:Colend

ReferencesEdit

Template:Reflist

External linksEdit

Template:ProbDistributions