Falling and rising factorials
Template:Short description Template:Use American English Template:Redirect In mathematics, the falling factorial (sometimes called the descending factorial,<ref name=Steffensen/> falling sequential product, or lower factorial) is defined as the polynomial <math display="block"> \begin{align} (x)_n = x^\underline{n} &= \overbrace{x(x-1)(x-2)\cdots(x-n+1)}^{n\text{ factors}} \\ &= \prod_{k=1}^n(x-k+1) = \prod_{k=0}^{n-1}(x-k) . \end{align}</math>
The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial,<ref name=Steffensen> Template:Cite book — A reprint of the 1950 edition by Chelsea Publishing. </ref> rising sequential product, or upper factorial) is defined as <math display="block"> \begin{align} x^{(n)} = x^\overline{n} &= \overbrace{x(x+1)(x+2)\cdots(x+n-1)}^{n\text{ factors}} \\ &= \prod_{k=1}^n(x+k-1) = \prod_{k=0}^{n-1}(x+k) . \end{align}</math>
The value of each is taken to be 1 (an empty product) when <math>n=0</math>. These symbols are collectively called factorial powers.<ref name="The Art of Computer Programming"> Template:Cite book </ref>
The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation <math>(x)_n</math>, where Template:Mvar is a non-negative integer. It may represent either the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used <math>(x)_n</math> with yet another meaning, namely to denote the binomial coefficient <math>\tbinom{x}{n}</math>.<ref name=Knuth> Template:Cite journal The remark about the Pochhammer symbol is on page 414. </ref>
In this article, the symbol <math>(x)_n</math> is used to represent the falling factorial, and the symbol <math>x^{(n)}</math> is used for the rising factorial. These conventions are used in combinatorics,<ref> Template:Cite book </ref> although Knuth's underline and overline notations <math>x^\underline{n}</math> and <math>x^\overline{n}</math> are increasingly popular.<ref name="The Art of Computer Programming"/><ref> Template:Cite book </ref> In the theory of special functions (in particular the hypergeometric function) and in the standard reference work Abramowitz and Stegun, the Pochhammer symbol <math>(x)_n</math> is used to represent the rising factorial.<ref> Template:Cite book </ref><ref> Template:Cite book — Gives a useful list of formulas for manipulating the rising factorial in Template:Math notation. </ref>
When <math>x</math> is a positive integer, <math>(x)_n</math> gives the number of [[k-permutation|Template:Mvar-permutations]] (sequences of distinct elements) from an Template:Mvar-element set, or equivalently the number of injective functions from a set of size <math>n</math> to a set of size <math>x</math>. The rising factorial <math>x^{(n)}</math> gives the number of partitions of an <math>n</math>-element set into <math>x</math> ordered sequences (possibly empty).Template:Efn
Examples and combinatorial interpretationEdit
The first few falling factorials are as follows:
<math display="block"> \begin{alignat}{2} (x)_0 & &&= 1 \\ (x)_1 & &&= x \\ (x)_2 &= x(x-1) &&= x^2-x \\ (x)_3 &= x(x-1)(x-2) &&= x^3-3x^2+2x \\ (x)_4 &= x(x-1)(x-2)(x-3) &&= x^4-6x^3+11x^2-6x \end{alignat}</math>
The first few rising factorials are as follows:
<math display="block"> \begin{alignat}{2} x^{(0)} & &&= 1 \\ x^{(1)} & &&= x \\ x^{(2)} &= x(x+1) &&=x^2+x \\ x^{(3)} &= x(x+1)(x+2) &&=x^3+3x^2+2x \\ x^{(4)} &= x(x+1)(x+2)(x+3) &&=x^4+6x^3+11x^2+6x \end{alignat}</math>
The coefficients that appear in the expansions are Stirling numbers of the first kind (see below).
When the variable <math>x</math> is a positive integer, the number <math>(x)_n</math> is equal to the number of [[k-permutation|Template:Mvar-permutations from a set of Template:Mvar items]], that is, the number of ways of choosing an ordered list of length Template:Mvar consisting of distinct elements drawn from a collection of size <math>x</math>. For example, <math>(8)_3 = 8\times7\times6 = 336</math> is the number of different podiums—assignments of gold, silver, and bronze medals—possible in an eight-person race. On the other hand, <math>x^{(n)}</math> is "the number of ways to arrange <math>n</math> flags on <math>x</math> flagpoles",<ref name=Feller> Template:Cite book </ref> where all flags must be used and each flagpole can have any number of flags. Equivalently, this is the number of ways to partition a set of size <math>n</math> (the flags) into <math>x</math> distinguishable parts (the poles), with a linear order on the elements assigned to each part (the order of the flags on a given pole).
PropertiesEdit
The rising and falling factorials are simply related to one another: <math display="block"> \begin{alignat}{2} {(x)}_n &= {(x-n+1)}^{(n)} &&= (-1)^n (-x)^{(n)},\\ x^{(n)} &= {(x+n-1)}_{n} &&= (-1)^n (-x)_n. \end{alignat}</math>
Falling and rising factorials of integers are directly related to the ordinary factorial: <math display="block"> \begin{align} n! &= 1^{(n)} = (n)_n,\\[6pt] (m)_n &= \frac{m!}{(m-n)!},\\[6pt] m^{(n)} &= \frac{(m+n-1)!}{(m-1)!}. \end{align}</math>
Rising factorials of half integers are directly related to the double factorial: <math display="block"> \begin{align} \left[\frac{1}{2}\right]^{(n)} = \frac{(2n-1)!!}{2^n},\quad \left[\frac{2m+1}{2}\right]^{(n)} = \frac{(2(n+m)-1)!!}{2^n(2m-1)!!}. \end{align}</math>
The falling and rising factorials can be used to express a binomial coefficient: <math display="block"> \begin{align} \frac{(x)_n}{n!} &= \binom{x}{n},\\[6pt] \frac{x^{(n)}}{n!} &= \binom{x+n-1}{n}. \end{align}</math>
Thus many identities on binomial coefficients carry over to the falling and rising factorials.
The rising and falling factorials are well defined in any unital ring, and therefore <math>x</math> can be taken to be, for example, a complex number, including negative integers, or a polynomial with complex coefficients, or any complex-valued function.
Real numbers and negative nEdit
The falling factorial can be extended to real values of <math>x</math> using the gamma function provided <math>x</math> and <math>x+n</math> are real numbers that are not negative integers: <math display="block"> (x)_n = \frac{\Gamma(x+1)}{\Gamma(x-n+1)}\ , </math> and so can the rising factorial: <math display="block"> x^{(n)} = \frac{\Gamma(x+n)}{\Gamma(x)}\ . </math>
CalculusEdit
Falling factorials appear in multiple differentiation of simple power functions: <math display="block"> \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n x^a = (a)_n \cdot x^{a-n}. </math>
The rising factorial is also integral to the definition of the hypergeometric function: The hypergeometric function is defined for <math>|z| < 1</math> by the power series <math display="block"> {}_2F_1(a,b;c;z) = \sum_{n=0}^\infty \frac{a^{(n)} b^{(n)}}{c^{(n)}} \frac{z^n}{n!} </math> provided that <math>c \neq 0, -1, -2, \ldots</math>. Note, however, that the hypergeometric function literature typically uses the notation <math>(a)_n</math> for rising factorials.
Connection coefficients and identitiesEdit
Falling and rising factorials are closely related to Stirling numbers. Indeed, expanding the product reveals Stirling numbers of the first kind<math display="block"> \begin{align} (x)_n & = \sum_{k=0}^n s(n,k) x^k \\
&= \sum_{k=0}^n \begin{bmatrix}n \\ k \end{bmatrix} (-1)^{n-k}x^k \\
x^{(n)} & = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k \\ \end{align} </math>
And the inverse relations uses Stirling numbers of the second kind<math display="block"> \begin{align} x^n & = \sum_{k=0}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (x)_{k} \\
& = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} (-1)^{n-k} x^{(k)} .
\end{align} </math>
The falling and rising factorials are related to one another through the Lah numbers <math display="inline">L(n, k) = \binom{n-1}{k-1} \frac{n!}{k!} </math>:<ref name="Wolfram_functions"> {{#invoke:citation/CS1|citation |CitationClass=web }} </ref><math display="block"> \begin{align} x^{(n)} & = \sum_{k=0}^n L(n,k) (x)_k \\ (x)_n & = \sum_{k=0}^n L(n,k) (-1)^{n-k} x^{(k)} \end{align} </math>
Since the falling factorials are a basis for the polynomial ring, one can express the product of two of them as a linear combination of falling factorials:<ref>Template:Cite journal</ref> <math display="block"> (x)_m (x)_n = \sum_{k=0}^m \binom{m}{k} \binom{n}{k} k! \cdot (x)_{m+n-k} \ .</math>
The coefficients <math>\tbinom{m}{k} \tbinom{n}{k} k! </math> are called connection coefficients, and have a combinatorial interpretation as the number of ways to identify (or "glue together") Template:Mvar elements each from a set of size Template:Mvar and a set of size Template:Mvar.
There is also a connection formula for the ratio of two rising factorials given by <math display="block"> \frac{x^{(n)}}{x^{(i)}} = (x+i)^{(n-i)} ,\quad \text{for }n \geq i .</math>
Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities:<ref name="Graham-Knuth-Patashnik-1988"> Template:Cite book </ref>Template:Rp
<math display="block"> \begin{align} (x)_{m+n} & = (x)_m (x-m)_n = (x)_n (x-n)_m \\[6pt] x^{(m+n)} & = x^{(m)} (x+m)^{(n)} = x^{(n)} (x+n)^{(m)} \\[6pt] x^{(-n)} & = \frac{\Gamma(x-n)}{\Gamma(x)} = \frac{(x-n-1)!}{(x-1)!} = \frac{1}{(x-n)^{(n)}} = \frac{1}{(x-1)_n} = \frac{1}{(x-1)(x-2) \cdots (x-n)} \\[6pt] (x)_{-n} & = \frac{\Gamma(x+1)}{\Gamma(x+n+1)} = \frac{x!}{(x+n)!} = \frac{1}{(x+n)_n} = \frac{1}{(x+1)^{(n)}} = \frac{1}{(x+1)(x+2) \cdots (x+n)} \end{align} </math>
Finally, duplication and multiplication formulas for the falling and rising factorials provide the next relations: <math display="block"> \begin{align} (x)_{k+mn} &= x^{(k)} m^{mn} \prod_{j=0}^{m-1} \left(\frac{x-k-j}{m}\right)_{n}\,,& \text{for } m &\in \mathbb{N} \\[6pt] x^{(k+mn)} &= x^{(k)} m^{mn} \prod_{j=0}^{m-1} \left(\frac{x+k+j}{m}\right)^{(n)},& \text{for } m &\in \mathbb{N} \\[6pt] (ax+b)^{(n)} &= x^n \prod_{j=0}^{n-1} \left(a+\frac{b+j}{x}\right),& \text{for } x &\in \mathbb{Z}^+ \\[6pt] (2x)^{(2n)} &= 2^{2n} x^{(n)} \left(x+\frac{1}{2}\right)^{(n)} . \end{align}</math>
Relation to umbral calculusEdit
The falling factorial occurs in a formula which represents polynomials using the forward difference operator <math>\ \operatorname\Delta f(x) ~ \stackrel{\mathrm{def}}{=} ~ f(x{+}1) - f(x)\ ,</math> which in form is an exact analogue to Taylor's theorem: Compare the series expansion from umbral calculus
- <math display="block">\qquad
f(t) = \sum_{n=0}^\infty\ \frac{ 1 }{\ n! }\operatorname{\Delta}_x^n f(x)\bigg\vert_{x = 0}\ (t)_n \qquad </math> with the corresponding series from differential calculus
- <math display="block">\qquad
f(t) = \sum_{n=0}^\infty\ \frac{ 1 }{\ n! } \left[\frac{\ \operatorname{d} }{ \operatorname{d} x }\right]^n f(x)\ \bigg\vert_{x = 0} \ t^n ~.</math>
In this formula and in many other places, the falling factorial <math>\ (x)_n\ </math> in the calculus of finite differences plays the role of <math>\ x^n\ </math> in differential calculus. For another example, note the similarity of <math>~ \operatorname\Delta (x)_n = n\ (x)_{n-1} ~</math> to <math>~ \frac{\ \operatorname{d} }{ \operatorname{d} x }\ x^n = n\ x^{n-1} ~.</math>
A corresponding relation holds for the rising factorial and the backward difference operator.
The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and rising factorials are Sheffer sequences of binomial type, as shown by the relations:
<math display="block"> \ \begin{align} (a + b)_n &= \sum_{j=0}^n\ \binom{n}{j}\ (a)_{n-j}\ (b)_{j}\ \\[6pt] (a + b)^{(n)} &= \sum_{j=0}^n\ \binom{n}{j}\ a^{(n-j)}\ b^{(j)}\ \end{align}\ </math>
where the coefficients are the same as those in the binomial theorem.
Similarly, the generating function of Pochhammer polynomials then amounts to the umbral exponential,
<math display="block">\ \sum_{n=0}^\infty\ (x)_n\ \frac{~ t^n\ }{\ n! }\ =\ \left(\ 1 + t\ \right)^x\ ,</math>
since
<math display="block">\ \operatorname\Delta_x \left(\ 1 + t\ \right)^x\ =\ t \cdot \left(\ 1 + t\ \right)^x ~.</math>
Alternative notationsEdit
An alternative notation for the rising factorial <math display="block"> x^\overline{m} \equiv (x)_{+m} \equiv (x)_m = \overbrace{x(x+1)\ldots(x+m-1)}^{m \text{ factors}} \quad \text{for integer } m\ge0 </math>
and for the falling factorial <math display="block"> x^\underline{m} \equiv (x)_{-m} = \overbrace{x(x-1)\ldots(x-m+1)}^{m \text{ factors}} \quad \text{for integer } m \ge 0</math>
goes back to A. Capelli (1893) and L. Toscano (1939), respectively.<ref name="The Art of Computer Programming"/> Graham, Knuth, and Patashnik<ref name=Graham-Knuth-Patashnik-1988/>Template:Rp propose to pronounce these expressions as "<math>x</math> to the <math>m</math> rising" and "<math>x</math> to the <math>m</math> falling", respectively.
An alternative notation for the rising factorial <math>x^{(n)}</math> is the less common <math>(x)_n^+</math>. When <math>(x)_n^+</math> is used to denote the rising factorial, the notation <math>(x)_n^-</math> is typically used for the ordinary falling factorial, to avoid confusion.<ref name="Knuth" />
GeneralizationsEdit
The Pochhammer symbol has a generalized version called the generalized Pochhammer symbol, used in multivariate analysis. There is also a [[q-analog|Template:Mvar-analogue]], the [[q-Pochhammer symbol|Template:Mvar-Pochhammer symbol]].
For any fixed arithmetic function <math>f: \mathbb{N} \rarr \mathbb{C}</math> and symbolic parameters Template:Mvar, Template:Mvar, related generalized factorial products of the form
<math display="block"> (x)_{n,f,t} := \prod_{k=0}^{n-1} \left(x+\frac{f(k)}{t^k}\right)</math>
may be studied from the point of view of the classes of generalized Stirling numbers of the first kind defined by the following coefficients of the powers of Template:Mvar in the expansions of Template:Math and then by the next corresponding triangular recurrence relation:
<math display="block"> \begin{align} \left[\begin{matrix} n \\ k \end{matrix} \right]_{f,t} & = \left[x^{k-1}\right] (x)_{n,f,t} \\
& = f(n-1) t^{1-n} \left[\begin{matrix} n-1 \\ k \end{matrix} \right]_{f,t} + \left[\begin{matrix} n-1 \\ k-1 \end{matrix} \right]_{f,t} + \delta_{n,0} \delta_{k,0}.
\end{align} </math>
These coefficients satisfy a number of analogous properties to those for the Stirling numbers of the first kind as well as recurrence relations and functional equations related to the Template:Mvar-harmonic numbers,<ref>Template:Cite journal</ref> <math display="block"> F_n^{(r)}(t) := \sum_{k \leq n} \frac{ t^k }{ f(k)^r }\,.</math>
See alsoEdit
- [[Pochhammer k-symbol|Pochhammer Template:Mvar-symbol]]
- Vandermonde identity
ReferencesEdit
Template:Notelist Template:Reflist
External linksEdit
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:PochhammerSymbol%7CPochhammerSymbol.html}} |title = Pochhammer Symbol |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}