Template:Short description In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of Template:Math. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral Template:Math, <math display="block">\mathrm{I}(x,y)= \langle x,y \rangle.</math>

DefinitionEdit

Let Template:Math be a parametric surface. Then the inner product of two tangent vectors is <math display="block"> \begin{align} & \mathrm{I}(aX_u+bX_v,cX_u+dX_v) \\[5pt] = {} & ac \langle X_u,X_u \rangle + (ad+bc) \langle X_u,X_v \rangle + bd \langle X_v,X_v \rangle \\[5pt] = {} & Eac + F(ad+bc) + Gbd, \end{align} </math> where Template:Mvar, Template:Mvar, and Template:Mvar are the coefficients of the first fundamental form.

The first fundamental form may be represented as a symmetric matrix. <math display="block">\mathrm{I}(x,y) = x^\mathsf{T} \begin{bmatrix} E & F \\ F & G \end{bmatrix}y </math>

Further notationEdit

When the first fundamental form is written with only one argument, it denotes the inner product of that vector with itself. <math display="block">\mathrm{I}(v)= \langle v,v \rangle = |v|^2</math>

The first fundamental form is often written in the modern notation of the metric tensor. The coefficients may then be written as Template:Mvar: <math display="block"> \left(g_{ij}\right) = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} =\begin{pmatrix} E & F \\ F & G \end{pmatrix}</math>

The components of this tensor are calculated as the scalar product of tangent vectors Template:Math and Template:Math: <math display="block">g_{ij} = \langle X_i, X_j \rangle </math> for Template:Math. See example below.

Calculating lengths and areasEdit

The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element Template:Math may be expressed in terms of the coefficients of the first fundamental form as <math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math>

The classical area element given by Template:Math can be expressed in terms of the first fundamental form with the assistance of Lagrange's identity, <math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math>

Example: curve on a sphereEdit

A spherical curve on the unit sphere in Template:Math may be parametrized as <math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math> Differentiating Template:Math with respect to Template:Mvar and Template:Mvar yields <math display="block">\begin{align} X_u &= \begin{bmatrix} -\sin u \sin v \\ \cos u \sin v \\ 0 \end{bmatrix},\\[5pt] X_v &= \begin{bmatrix} \cos u \cos v \\ \sin u \cos v \\ -\sin v \end{bmatrix}. \end{align}</math> The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.

<math display="block">\begin{align} E &= X_u \cdot X_u = \sin^2 v \\ F &= X_u \cdot X_v = 0 \\ G &= X_v \cdot X_v = 1 \end{align}</math> so: <math display="block"> \begin{bmatrix}E & F \\F & G\end{bmatrix} =\begin{bmatrix} \sin^2 v & 0 \\0 & 1\end{bmatrix}.</math>

Length of a curve on the sphereEdit

The equator of the unit sphere is a parametrized curve given by <math display="block">(u(t),v(t))=(t,\tfrac{\pi}{2})</math> with Template:Mvar ranging from 0 to 2Template:Pi. The line element may be used to calculate the length of this curve.

<math display="block">\int_0^{2\pi} \sqrt{ E\left(\frac{du}{dt}\right)^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2 } \,dt = \int_0^{2\pi} \left|\sin v\right| \, dt = 2\pi \sin \tfrac{\pi}{2} = 2\pi</math>

Area of a region on the sphereEdit

The area element may be used to calculate the area of the unit sphere.

<math display="block">\int_0^\pi \int_0^{2\pi} \sqrt{ EG-F^2 } \ du\, dv = \int_0^\pi \int_0^{2\pi} \sin v \, du\, dv = 2\pi \Big[ {-\cos v} \Big]_0^{\pi} = 4\pi</math>

Gaussian curvatureEdit

The Gaussian curvature of a surface is given by <math display="block"> K = \frac{\det \mathrm{I\!I}_p}{\det \mathrm{I}_p} = \frac{ LN-M^2}{EG-F^2 }, </math> where Template:Mvar, Template:Mvar, and Template:Mvar are the coefficients of the second fundamental form.

Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that Template:Mvar is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.

See alsoEdit

External linksEdit

Template:Curvature