Gustav Kirchhoff
Template:Short description Template:Use dmy dates Template:Infobox scientist
Gustav Robert Kirchhoff ({{#invoke:IPA|main}}; 12 March 1824 – 17 October 1887) was a German chemist, mathematician, physicist, and spectroscopist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects.<ref name="Marshall">Template:Cite journal</ref><ref>Template:Cite book</ref> He also coined the term black body in 1860.<ref>Template:Cite book</ref>
Several different sets of concepts are named "Kirchhoff's laws" after him, which include Kirchhoff's circuit laws, Kirchhoff's law of thermal radiation, and Kirchhoff's law of thermochemistry.
The Bunsen–Kirchhoff Award for spectroscopy is named after Kirchhoff and his colleague, Robert Bunsen.
Life and workEdit
Gustav Kirchhoff was born on 12 March 1824 in Königsberg, Prussia, the son of Friedrich Kirchhoff, a lawyer, and Johanna Henriette Wittke.<ref>Template:Cite book</ref> His family were Lutherans in the Evangelical Church of Prussia. He graduated from the Albertus University of Königsberg in 1847 where he attended the mathematico-physical seminar directed by Carl Gustav Jacob Jacobi,<ref>Template:Cite book</ref> Franz Ernst Neumann and Friedrich Julius Richelot. In the same year, he moved to Berlin, where he stayed until he received a professorship at Breslau. Later, in 1857, he married Clara Richelot, the daughter of his mathematics professor Richelot. The couple had five children. Clara died in 1869. He married Luise Brömmel in 1872.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Kirchhoff formulated his circuit laws, which are now ubiquitous in electrical engineering, in 1845, while he was still a student. He completed this study as a seminar exercise; it later became his doctoral dissertation. He was called to the University of Heidelberg in 1854, where he collaborated in spectroscopic work with Robert Bunsen. In 1857, he calculated that an electric signal in a resistanceless wire travels along the wire at the speed of light.<ref> Template:Cite journal</ref><ref>Template:Cite journal</ref> He proposed his law of thermal radiation in 1859, and gave a proof in 1861. Together Kirchhoff and Bunsen invented the spectroscope, which Kirchhoff used to pioneer the identification of the elements in the Sun, showing in 1859 that the Sun contains sodium. He and Bunsen discovered caesium and rubidium in 1861.<ref name="Weeks">Template:Cite book</ref> At Heidelberg he ran a mathematico-physical seminar, modelled on Franz Ernst Neumann's, with the mathematician Leo Koenigsberger. Among those who attended this seminar were Arthur Schuster and Sofia Kovalevskaya.
He contributed greatly to the field of spectroscopy by formalizing three laws that describe the spectral composition of light emitted by incandescent objects, building substantially on the discoveries of David Alter and Anders Jonas Ångström. In 1862, he was awarded the Rumford Medal for his researches on the fixed lines of the solar spectrum, and on the inversion of the bright lines in the spectra of artificial light.Template:Efn In 1875 Kirchhoff accepted the first chair dedicated specifically to theoretical physics at Berlin.
He also contributed to optics, carefully solving the wave equation to provide a solid foundation for Huygens' principle (and correct it in the process).<ref>Baker, Bevan B.; and Copson, Edward T.; The Mathematical Theory of Huygens' Principle, Oxford University Press, 1939, pp.Template:Nnbsp36–38.</ref><ref name=miller1991>Miller, David A. B.; "Huygens's wave propagation principle corrected", Optics Letters 16, 1370–1372, 1991</ref>
In 1864, he was elected as a member of the American Philosophical Society.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
In 1884, he became foreign member of the Royal Netherlands Academy of Arts and Sciences.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Kirchhoff died in 1887, and was buried in the St Matthäus Kirchhof Cemetery in Schöneberg, Berlin (just a few meters from the graves of the Brothers Grimm). Leopold Kronecker is buried in the same cemetery.
Kirchhoff's circuit lawsEdit
{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} Kirchhoff's first law is that the algebraic sum of currents in a network of conductors meeting at a point (or node) is zero. The second law is that in a closed circuit, the directed sums of the voltages in the system is zero.
Kirchhoff's three laws of spectroscopyEdit
- A solid, liquid, or dense gas excited to emit light will radiate at all wavelengths and thus produce a continuous spectrum.
- A low-density gas excited to emit light will do so at specific wavelengths, and this produces an emission spectrum.
- If light composing a continuous spectrum passes through a cool, low-density gas, the result will be an absorption spectrum.
Kirchhoff did not know about the existence of energy levels in atoms. The existence of discrete spectral lines had been known since Fraunhofer discovered them in 1814. That the lines formed a discrete mathematical pattern was described by Johann Balmer in 1885. Joseph Larmor explained the splitting of the spectral lines in a magnetic field known as the Zeeman Effect by the oscillation of electrons.<ref>Buchwald, Jed Z.; and Warwick, Andrew; editors; Histories of the Electron: The Birth of Microphysics</ref><ref>Template:Citation</ref> These discrete spectral lines were not explained as electron transitions until the Bohr model of the atom in 1913, which helped lead to quantum mechanics.
Kirchhoff's law of thermal radiationEdit
It was Kirchhoff's law of thermal radiation in which he proposed an unknown universal law for radiation that led Max Planck to the discovery of the quantum of action leading to quantum mechanics.
Kirchhoff's law of thermochemistryEdit
Template:See also Kirchhoff showed in 1858 that, in thermochemistry, the variation of the heat of a chemical reaction is given by the difference in heat capacity between products and reactants:
- <math>\left(\frac{\partial \Delta H}{\partial T}\right)_p = \Delta C_p</math>.
Integration of this equation permits the evaluation of the heat of reaction at one temperature from measurements at another temperature.<ref>Laidler, Keith J.; and Meiser, J. H.; "Physical Chemistry", Benjamin/Cummings 1982, p. 62</ref><ref>Atkins, Peter; and de Paula, J.; "Atkins' Physical Chemistry", W. H. Freeman, 2006 (8th edition), p. 56</ref>
Kirchhoff's theorem in graph theoryEdit
Kirchhoff also worked in the mathematical field of graph theory, in which he proved Kirchhoff's matrix tree theorem.
WorksEdit
- Template:Cite book
- Template:Cite book
- Vorlesungen über mathematische Physik. 4 vols., B. G. Teubner, Leipzig 1876–1894.
- Vol. 1: Mechanik. 1. Auflage, B. G. Teubner, Leipzig 1876 (online).
- Vol. 2: Mathematische Optik. B. G. Teubner, Leipzig 1891 (Herausgegeben von Kurt Hensel, online).
- Vol. 3: Electricität und Magnetismus. B. G. Teubner, Leipzig 1891 (Herausgegeben von Max Planck, online).
- Vol. 4: Theorie der Wärme. B. G. Teubner, Leipzig 1894, Herausgegeben von Max Planck<ref>Template:Cite journal</ref>
See alsoEdit
- Circuit rank
- Computational aeroacoustics
- Flame emission spectroscopy
- Spectroscope
- Kirchhoff Institute of Physics
- List of German inventors and discoverers
NotesEdit
ReferencesEdit
BibliographyEdit
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal HathiTrust full text. Partial English translation available in Magie, William Francis, A Source Book in Physics (1963). Cambridge: Harvard University Press. p. 354-360.
- Kirchhoff, Gustav (1860). “IV. Ueber das Verhältniß zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht,” Annalen der Physik 185(2), 275–301. (coinage of term “blackbody”) [On the relationship between the emissivity and the absorptivity of bodies for heat and light]
Further readingEdit
- Template:MathGenealogy
- Template:MacTutor Biography
- Template:ScienceWorldBiography
- Klaus Hentschel: Gustav Robert Kirchhoff und seine Zusammenarbeit mit Robert Wilhelm Bunsen, in: Karl von Meyenn (Hrsg.) Die Grossen Physiker, Munich: Beck, vol. 1 (1997), pp. 416–430, 475–477, 532–534.
- Klaus Hentschel: Mapping the Spectrum. Techniques of Visual Representation in Research and Teaching, Oxford: OUP, 2002.
- Kirchhoff's 1857 paper on the speed of electrical signals in a wire
- Template:Wikisource-inline