Hardy's theorem
In mathematics, Hardy's theorem is a result in complex analysis describing the behavior of holomorphic functions.
Let <math>f</math> be a holomorphic function on the open ball centered at zero and radius <math>R</math> in the complex plane, and assume that <math>f</math> is not a constant function. If one defines
- <math>I(r) = \frac{1}{2\pi} \int_0^{2\pi}\! \left| f(r e^{i\theta}) \right| \,d\theta</math>
for <math>0< r < R,</math> then this function is strictly increasing and is a convex function of <math>\log r</math>.
See alsoEdit
ReferencesEdit
- John B. Conway. (1978) Functions of One Complex Variable I. Springer-Verlag, New York, New York.
{{#if: | This article incorporates material from the following PlanetMath articles, which are licensed under the Creative Commons Attribution/Share-Alike License: {{#if: | Hardy's theorem | {{#if: 5798 | Hardy's theorem | [{{{sourceurl}}} Hardy's theorem] }} }}, {{#if: | {{{title2}}} | {{#if: | {{{title2}}} | [{{{sourceurl2}}} {{{title2}}}] }} }}{{#if: | , {{#if: | {{{title3}}} | {{#if: | {{{title3}}} | [{{{sourceurl3}}} {{{title3}}}] }} }} }}{{#if: | , {{#if: | {{{title4}}} | {{#if: | {{{title4}}} | [{{{sourceurl4}}} {{{title4}}}] }} }} }}{{#if: | , {{#if: | {{{title5}}} | {{#if: | {{{title5}}} | [{{{sourceurl5}}} {{{title5}}}] }} }} }}{{#if: | , {{#if: | {{{title6}}} | {{#if: | {{{title6}}} | [{{{sourceurl6}}} {{{title6}}}] }} }} }}{{#if: | , {{#if: | {{{title7}}} | {{#if: | {{{title7}}} | [{{{sourceurl7}}} {{{title7}}}] }} }} }}{{#if: | , {{#if: | {{{title8}}} | {{#if: | {{{title8}}} | [{{{sourceurl8}}} {{{title8}}}] }} }} }}{{#if: | , {{#if: | {{{title9}}} | {{#if: | {{{title9}}} | [{{{sourceurl9}}} {{{title9}}}] }} }} }}. | This article incorporates material from {{#if: | Hardy's theorem | Hardy's theorem}} on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. }}