Template:Short description Template:Infobox cell A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in:

StructureEdit

The typical hepatocyte is cubical with sides of 20-30 μm, (in comparison, a human hair has a diameter of 17 to 180 μm).<ref name="Physics Factbook">The diameter of human hair ranges from 17 to 181 μm. {{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The typical volume of a hepatocyte is 3.4 x 10−9 cm3.<ref>Template:Cite book</ref> Smooth endoplasmic reticulum is abundant in hepatocytes, in contrast to most other cell types.<ref name="Pavelka Roth 2010 p. ">Template:Cite book</ref>

MicroanatomyEdit

Hepatocytes display an eosinophilic cytoplasm, reflecting numerous mitochondria, and basophilic stippling due to large amounts of rough endoplasmic reticulum and free ribosomes. Brown lipofuscin granules are also observed (with increasing age) together with irregular unstained areas of cytoplasm; these correspond to cytoplasmic glycogen and lipid stores removed during histological preparation. The average life span of the hepatocyte is 5 months; they are able to regenerate.Template:Cn

Hepatocyte nuclei are round with dispersed chromatin and prominent nucleoli. Anisokaryosis (or variation in the size of the nuclei) is common and often reflects tetraploidy and other degrees of polyploidy, a normal feature of 30-40% of hepatocytes in the adult human liver.<ref>Template:Cite journal</ref> Binucleate cells are also common.Template:Cn

Hepatocytes are organised into plates separated by vascular channels (sinusoids), an arrangement supported by a reticulin (collagen type III) network. The hepatocyte plates are one cell thick in mammals and two cells thick in the chicken. Sinusoids display a discontinuous, fenestrated endothelial cell lining. The endothelial cells have no basement membrane and are separated from the hepatocytes by the space of Disse, which drains lymph into the portal tract lymphatics.Template:Cn

Kupffer cells are scattered between endothelial cells; they are part of the reticuloendothelial system and phagocytose spent erythrocytes. Stellate (Ito) cells store vitamin A and produce extracellular matrix and collagen; they are also distributed amongst endothelial cells but are difficult to visualise by light microscopy.Template:Cn

FunctionEdit

Protein synthesisEdit

The hepatocyte is a cell in the body that manufactures serum albumin, fibrinogen, and the prothrombin group of clotting factors (except for Factors 3 and 4).Template:Cn

It is the main site for the synthesis of lipoproteins, ceruloplasmin, transferrin, complement, and glycoproteins. Hepatocytes manufacture their own structural proteins and intracellular enzymes.Template:Cn

Synthesis of proteins is by the rough endoplasmic reticulum (RER), and both the rough and smooth endoplasmic reticulum (SER) are involved in secretion of the proteins formed.Template:Cn

The endoplasmic reticulum (ER) is involved in conjugation of proteins to lipid and carbohydrate moieties synthesized by, or modified within, the hepatocytes.Template:Cn

Proteins produced by hepatocytes that function as hormones are known as hepatokines.Template:Cn

Carbohydrate metabolismEdit

Template:See also The liver forms fatty acids from carbohydrates and synthesizes triglycerides from fatty acids and glycerol.<ref>Template:Cite journal</ref> Hepatocytes also synthesize apoproteins with which they then assemble and export lipoproteins (VLDL, HDL).Template:Cn

The liver is also the main site in the body for gluconeogenesis, the formation of carbohydrates from precursors such as alanine, glycerol, and oxaloacetate.Template:Cn

Lipid metabolismEdit

The liver receives many lipids from the systemic circulation and metabolizes chylomicron remnants. It also synthesizes cholesterol from acetate and further synthesizes bile salts. The liver is the sole site of bile salts formation.Template:Cn

DetoxificationEdit

Hepatocytes have the ability to metabolize, detoxify, and inactivate exogenous compounds such as drugs (see drug metabolism), insecticides, and endogenous compounds such as steroids.Template:Cn

The drainage of the intestinal venous blood into the liver requires efficient detoxification of miscellaneous absorbed substances to maintain homeostasis and protect the body against ingested toxins.Template:Cn

One of the detoxifying functions of hepatocytes is to modify ammonia into urea for excretion.Template:Cn

The most abundant organelle in liver cells is the smooth endoplasmic reticulum.Template:Cn

AgingEdit

As mammalian liver cells age, damages in their DNA increase in prevalence. A review of the literature indicated that in mouse liver cells DNA damages (single-strand breaks, oxidized bases and 7-methylguanine) increase with age.<ref name="Holmes1992">Template:Cite journal</ref> Also, in rat liver, DNA single- and double-strand breaks, oxidized bases, and methylated bases increase with age; and in rabbit liver, cross-linked bases increase with age.<ref name = Holmes1992/> Liver cells depend on DNA repair pathways that specifically protect the transcribed compartment of the genome to promote sustained functionality and cell preservation with age.<ref>Template:Cite journal</ref>

Society and cultureEdit

Use in researchEdit

Primary hepatocytes are commonly used in cell biological and biopharmaceutical research. In vitro model systems based on hepatocytes have been of great help to better understand the role of hepatocytes in (patho)physiological processes of the liver. In addition, pharmaceutical industry has heavily relied on the use of hepatocytes in suspension or culture to explore mechanisms of drug metabolism and even predict in vivo drug metabolism. For these purposes, hepatocytes are usually isolated from animal or human<ref>Template:Cite book</ref> whole liver or liver tissue by collagenase digestion, which is a two-step process. In the first step, the liver is placed in an isotonic solution, in which calcium is removed to disrupt cell-cell tight junctions by the use of a calcium chelating agent. Next, a solution containing collagenase is added to separate the hepatocytes from the liver stroma. This process creates a suspension of hepatocytes, which can be seeded in multi-well plates and cultured for many days or even weeks. For optimal results, culture plates should first be coated with an extracellular matrix (e.g. collagen, Matrigel) to promote hepatocyte attachment (typically within 1-3 hr after seeding) and maintenance of the hepatic phenotype. In addition, and overlay with an additional layer of extracellular matrix is often performed to establish a sandwich culture of hepatocytes. The application of a sandwich configuration supports prolonged maintenance of hepatocytes in culture.<ref>Template:Cite journal Erratum in: FASEB J 1989 May;3(7):1873.</ref><ref>Template:Cite journal</ref> Freshly-isolated hepatocytes that are not used immediately can be cryopreserved and stored.<ref>Template:Cite journal</ref> They do not proliferate in culture. Hepatocytes are intensely sensitive to damage during the cycles of cryopreservation including freezing and thawing. Even after the addition of classical cryoprotectants there is still damage done while being cryopreserved.<ref>Template:Cite journal</ref> Nevertheless, recent cryopreservation and resuscitation protocols support application of cryopreserved hepatocytes for most biopharmaceutical applications.<ref>Template:Cite journal</ref>

Additional imagesEdit

See alsoEdit

ReferencesEdit

Template:Reflist

External linksEdit

Template:Digestive glands Template:Authority control