Template:Short description

The histamine receptors are a class of G protein–coupled receptors which bind histamine as their primary endogenous ligand.<ref name="pmid9311023">Template:Cite journal</ref><ref>Template:Cite journal</ref> Histamine is a neurotransmitter involved in various physiological processes. There are four main types of histamine receptors: H1, H2, H3, and H4. H1 receptors are linked to allergic responses, H2 to gastric acid regulation, H3 to neurotransmitter release modulation, and H4 to immune system function.

There are four known histamine receptors:

  • H1 receptorTemplate:DashPrimarily located on smooth muscle cells, endothelial cells, and neurons. Activation of H1 receptors mediates various responses, including smooth muscle contraction (leading to bronchoconstriction, intestinal cramping), increased vascular permeability (resulting in edema), and stimulation of sensory nerve endings (causing itching and pain). H1 antagonists, commonly known as antihistamines, are used to alleviate symptoms of allergies and allergic reactions.<ref name = "Simons_2004">Template:Cite journalS</ref>
  • H2 receptorTemplate:DashFound mainly in the stomach lining (parietal cells), H2 receptors regulate gastric acid secretion by stimulating the production of hydrochloric acid. H2 antagonists (H2 blockers) are used to reduce stomach acid production and treat conditions like gastroesophageal reflux disease (GERD) and peptic ulcers.<ref name = "Simons_2004" />
  • H3 receptorTemplate:DashPredominantly located in the central nervous system (CNS), particularly in regions associated with neurotransmitter release and modulation. H3 receptors act as presynaptic autoreceptors and heteroreceptors, regulating the release of neurotransmitters such as dopamine, serotonin, norepinephrine, and acetylcholine. Modulation of H3 receptors is being explored as a potential target for various neurological and psychiatric disorders.<ref>Template:Cite journal</ref>
  • H4 receptorTemplate:DashInitially discovered on immune cells, particularly mast cells, eosinophils, and T cells, H4 receptors are involved in immune responses, including chemotaxis (cellular movement in response to chemical signals) and cytokine production. These receptors play a role in inflammation and allergic reactions. Research on H4 receptors is ongoing to better understand their involvement in immune-related disorders and to develop potential therapeutic interventions.<ref>Template:Cite journal</ref>

ComparisonEdit

Histamine receptors
Receptor Location Mechanism of action Function Antagonists Uses of antagonists
H1 citation CitationClass=web

}}</ref> Template:Blist

Gq Template:Blist
H2 Template:Blist Gs
cAMP2+
Template:Blist
H3 Template:Blist Gi Template:Blist
H4 Gi Template:As of, no clinical uses exist.
Potential uses include:<ref>{{#invoke:citation/CS1|citation
CitationClass=web

}}</ref> Template:Blist

There are several splice variants of H3 present in various species. Though all of the receptors are 7-transmembrane g protein coupled receptors, H1 and H2 are quite different from H3 and H4 in their activities. H1 causes an increase in PIP2 hydrolysis, H2 stimulates gastric acid secretion, and H3 mediates feedback inhibition of histamine.

ReferencesEdit

Template:Reflist

External linksEdit

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

Template:G protein-coupled receptors Template:Histaminergics