Template:Short description In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.<ref>Template:Cite journal</ref>

DefinitionEdit

  • G is a connected semisimple real Lie group.
  • <math> \mathfrak{g}_0 </math> is the Lie algebra of G
  • <math> \mathfrak{g} </math> is the complexification of <math> \mathfrak{g}_0 </math>.
  • θ is a Cartan involution of <math> \mathfrak{g}_0 </math>
  • <math> \mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0 </math> is the corresponding Cartan decomposition
  • <math> \mathfrak{a}_0 </math> is a maximal abelian subalgebra of <math> \mathfrak{p}_0 </math>
  • Σ is the set of restricted roots of <math> \mathfrak{a}_0 </math>, corresponding to eigenvalues of <math> \mathfrak{a}_0 </math> acting on <math> \mathfrak{g}_0 </math>.
  • Σ+ is a choice of positive roots of Σ
  • <math> \mathfrak{n}_0 </math> is a nilpotent Lie algebra given as the sum of the root spaces of Σ+
  • K, A, N, are the Lie subgroups of G generated by <math> \mathfrak{k}_0, \mathfrak{a}_0 </math> and <math> \mathfrak{n}_0 </math>.

Then the Iwasawa decomposition of <math> \mathfrak{g}_0 </math> is

<math>\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0</math>

and the Iwasawa decomposition of G is

<math>G=KAN</math>

meaning there is an analytic diffeomorphism (but not a group homomorphism) from the manifold <math> K \times A \times N </math> to the Lie group <math> G </math>, sending <math> (k,a,n) \mapsto kan </math>.

The dimension of A (or equivalently of <math> \mathfrak{a}_0 </math>) is equal to the real rank of G.

Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.

The restricted root space decomposition is

<math> \mathfrak{g}_0 = \mathfrak{m}_0\oplus\mathfrak{a}_0\oplus_{\lambda\in\Sigma}\mathfrak{g}_{\lambda} </math>

where <math>\mathfrak{m}_0</math> is the centralizer of <math>\mathfrak{a}_0</math> in <math>\mathfrak{k}_0</math> and <math>\mathfrak{g}_{\lambda} = \{X\in\mathfrak{g}_0: [H,X]=\lambda(H)X\;\;\forall H\in\mathfrak{a}_0 \}</math> is the root space. The number <math>m_{\lambda}= \text{dim}\,\mathfrak{g}_{\lambda}</math> is called the multiplicity of <math>\lambda</math>.

ExamplesEdit

If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices with determinant 1, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.

For the case of n = 2, the Iwasawa decomposition of G = SL(2, R) is in terms of

<math> \mathbf{K} = \left\{
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta 
\end{pmatrix} \in SL(2,\mathbb{R}) \ | \  \theta\in\mathbf{R}  \right\} \cong SO(2) ,

</math>

<math>

\mathbf{A} = \left\{

\begin{pmatrix}
r & 0 \\
0 & r^{-1} 
\end{pmatrix} \in SL(2,\mathbb{R}) \ | \  r > 0  \right\},

</math>

<math>

\mathbf{N} = \left\{

\begin{pmatrix}
1 & x \\
0 & 1 
\end{pmatrix} \in SL(2,\mathbb{R}) \ | \  x\in\mathbf{R} \right\}.

</math>

For the symplectic group G = Sp(2n, R), a possible Iwasawa decomposition is in terms of

<math> \mathbf{K} = Sp(2n,\mathbb{R})\cap SO(2n)
= \left\{
\begin{pmatrix}
A & B \\
-B & A 
\end{pmatrix} \in Sp(2n,\mathbb{R}) \ | \  A+iB \in U(n) \right\} \cong U(n) ,

</math>

<math>

\mathbf{A} = \left\{

\begin{pmatrix}
D & 0 \\
0 & D^{-1} 
\end{pmatrix} \in Sp(2n,\mathbb{R}) \ | \  D \text{ positive, diagonal} \right\},

</math>

<math>

\mathbf{N} = \left\{

\begin{pmatrix}
N & M \\
0 & N^{-T} 
\end{pmatrix} \in Sp(2n,\mathbb{R}) \ | \  N \text{ upper triangular with diagonal elements = 1},\ NM^T = MN^T \right\}.

</math>

Non-Archimedean Iwasawa decompositionEdit

There is an analog to the above Iwasawa decomposition for a non-Archimedean field <math>F</math>: In this case, the group <math>GL_n(F)</math> can be written as a product of the subgroup of upper-triangular matrices and the (maximal compact) subgroup <math>GL_n(O_F)</math>, where <math>O_F</math> is the ring of integers of <math>F</math>.<ref>Template:Citation, Prop. 4.5.2</ref>

See alsoEdit

ReferencesEdit

Template:Reflist