Template:Short description Template:Pulmonary function Lung volumes and lung capacities are measures of the volume of air in the lungs at different phases of the respiratory cycle.

The average total lung capacity of an adult human male is about 6 litres of air.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Tidal breathing is normal, resting breathing; the tidal volume is the volume of air that is inhaled or exhaled in only a single such breath.

The average human respiratory rate is 30–60 breaths per minute at birth,<ref name="DeBoer2004">Template:Cite book</ref> decreasing to 12–20 breaths per minute in adults.<ref name="LindhPooler2009">Template:Cite book</ref>

Factors affecting volumesEdit

Several factors affect lung volumes; some can be controlled, and some cannot be controlled. Lung volumes vary with different people as follows:

Larger volume Smaller volumes
taller people shorter people
people who live at higher altitudes people who live at lower altitudes
fit obese<ref>Template:Cite journal</ref>

A person who is born and lives at sea level will develop a slightly smaller lung capacity than a person who spends their life at a high altitude. This is because the partial pressure of oxygen is lower at higher altitude which, as a result means that oxygen less readily diffuses into the bloodstream. In response to higher altitude, the body's diffusing capacity increases in order to process more air. Also, due to the lower environmental air pressure at higher altitudes, the air pressure within the breathing system must be lower in order to inhale; in order to meet this requirement, the thoracic diaphragm has a tendency to lower to a greater extent during inhalation, which in turn causes an increase in lung volume.

When someone living at or near sea level travels to locations at high altitudes (e.g. the Andes; Denver, Colorado; Tibet; the Himalayas) that person can develop a condition called altitude sickness because their lungs remove adequate amounts of carbon dioxide but they do not take in enough oxygen. (In normal individuals, carbon dioxide is the primary determinant of respiratory drive.)

Lung function development is reduced in children who grow up near motorways<ref>Template:Cite news</ref><ref name="Gauderman">Template:Cite journal</ref> although this seems at least in part reversible.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Air pollution exposure affects FEV1 in asthmatics, but also affects FVC and FEV1 in healthy adults even at low concentrations.<ref name="IntPanis">Template:Cite journal</ref>

Specific changes in lung volumes also occur during pregnancy. Functional residual capacity drops 18–20%,<ref name="simpson breathing"/> typically falling from 1.7 to 1.35 litres,Template:Citation needed due to the compression of the diaphragm by the uterus.Template:Citation needed The compression also causes a decreased total lung capacity (TLC) by 5%<ref name="simpson breathing"/> and decreased expiratory reserve volume by 20%.<ref name="simpson breathing"/> Tidal volume increases by 30–40%, from 0.5 to 0.7 litres,<ref name="simpson breathing"/> and minute ventilation by 30–40%<ref name="simpson breathing"/><ref name="isbn81-8147-920-3">Template:Cite book</ref> giving an increase in pulmonary ventilation. This is necessary to meet the increased oxygen requirement of the body, which reaches 50 ml/min, 20 ml of which goes to reproductive tissues. Overall, the net change in maximum breathing capacity is zero.<ref name="simpson breathing">Template:Cite book</ref>

ValuesEdit

Average lung volumes in healthy adults<ref name=":0">Template:Cite book</ref>
Volume Value (litres)
In men In women
Inspiratory reserve volume (IRV) 3.3 1.9
Tidal volume (TV) 0.5 0.5
Expiratory reserve volume (ERV) 1.1 0.7
Residual volume (RV) 1.2 1.1
Lung capacities in healthy adults<ref name=":0" />
Volume Average value (litres) Derivation
In men In women
Vital capacity 4.8 3.1 IRV + TV + ERV
Inspiratory capacity 3.8 2.4 IRV + TV
Functional residual capacity 2.4 1.8 ERV + RV
Total lung capacity 6.0 4.2 IRV + TV + ERV + RV

The tidal volume, vital capacity, inspiratory capacity and expiratory reserve volume can be measured directly with a spirometer. These are the basic elements of a ventilatory pulmonary function test.

Determination of the residual volume is more difficult as it is impossible to "completely" breathe out. Therefore, measurement of the residual volume has to be done via indirect methods such as radiographic planimetry, body plethysmography, closed circuit dilution (including the helium dilution technique) and nitrogen washout.

In absence of such, estimates of residual volume have been prepared as a proportion of body mass for infants (18.1 ml/kg),<ref>Template:Cite journal</ref> or as a proportion of vital capacity (0.24 for men and 0.28 for women)<ref>Template:Cite journal</ref> or in relation to height and age ((0.0275* Age [Years]+0.0189*Height [cm]−2.6139) litres for normal-mass individuals and (0.0277*Age [Years]+0.0138*Height [cm]−2.3967) litres for overweight individuals).<ref>Template:Cite journal</ref> Standard errors in prediction equations for residual volume have been measured at 579 ml for men and 355 ml for women, while the use of 0.24*FVC gave a standard error of 318 ml.<ref>Template:Cite journal</ref>

Online calculators are available that can compute predicted lung volumes, and other spirometric parameters based on a patient's age, height, weight, and ethnic origin for many reference sources.

British rower and three-time Olympic gold medalist Pete Reed is reported to hold the largest recorded lung capacity of 11.68 litres;<ref>English Institute of Sport, 17 November 2006, test ID 27781</ref><ref name=":1">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>Template:Cite news</ref> US swimmer Michael Phelps is also said to have a lung capacity of around 12 litres.<ref name=":1" /><ref>Template:Cite news</ref>

Weight of breathEdit

The mass of one breath is approximately a gram (0.5-5 g). A litre of air weighs about 1.2 g (1.2 kg/m3).<ref>Atmosphere of Earth#Density and mass</ref> A half litre ordinary tidal breath<ref name=":0" /> weighs 0.6 g; a maximal 4.8 litre breath (average vital capacity for males)<ref name=":0" /> weighs approximately 5.8 g.

Restrictive and obstructiveEdit

File:Lung volumes in restricted, normal and obstructed lung.jpg
Scheme of changes in lung volumes in restricted and obstructed lung in comparison with healthy lung.

The results (in particular FEV1/FVC and FRC) can be used to distinguish between restrictive and obstructive pulmonary diseases:

Type Examples Description FEV1/FVC
restrictive diseases pulmonary fibrosis, Infant Respiratory Distress Syndrome, weak respiratory muscles, pneumothorax volumes are decreased often in a normal range (0.8–1.0)
obstructive diseases asthma, COPD, emphysema volumes are essentially normal but flow rates are impeded often low (asthma can reduce the ratio to 0.6, emphysema can reduce the ratio to 0.78–0.45)

See alsoEdit

ReferencesEdit

Template:Reflist

External linksEdit

Template:Respiratory physiology