Template:For Template:Refimprove

Template:Floating-point

In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand.

The magnitude of the smallest normal number in a format is given by:

<math display="block">b^{E_{\text{min}}}</math>

where b is the base (radix) of the format (like common values 2 or 10, for binary and decimal number systems), and <math display="inline">E_{\text{min}}</math> depends on the size and layout of the format.

Similarly, the magnitude of the largest normal number in a format is given by

<math display="block">b^{E_{\text{max}}}\cdot\left(b - b^{1-p}\right)</math>

where p is the precision of the format in digits and <math display="inline">E_{\text{min}}</math> is related to <math display="inline">E_{\text{max}}</math> as:

<math display="block">E_{\text{min}}\, \overset{\Delta}{\equiv}\, 1 - E_{\text{max}} = \left(-E_{\text{max}}\right) + 1</math>

In the IEEE 754 binary and decimal formats, b, p, <math display="inline">E_{\text{min}}</math>, and <math display="inline">E_{\text{max}}</math> have the following values:<ref>Template:Citation</ref>

Smallest and Largest Normal Numbers for common numerical Formats
Format <math>b</math> <math>p</math> <math>E_{\text{min}}</math> <math>E_{\text{max}}</math> Smallest Normal Number Largest Normal Number
binary16 2 11 −14 15 <math>2^{-14} \equiv 0.00006103515625</math> <math>2^{15}\cdot\left(2 - 2^{1-11}\right) \equiv 65504</math>
binary32 2 24 −126 127 <math>2^{-126} \equiv \frac{1}{2^{126}}</math> <math>2^{127}\cdot\left(2 - 2^{1-24}\right)</math>
binary64 2 53 −1022 1023 <math>2^{-1022} \equiv \frac{1}{2^{1022}}</math> <math>2^{1023}\cdot\left(2 - 2^{1-53}\right)</math>
binary128 2 113 −16382 16383 <math>2^{-16382} \equiv \frac{1}{2^{16382}}</math> <math>2^{16383}\cdot\left(2 - 2^{1-113}\right)</math>
decimal32 10 7 −95 96 <math>10^{-95} \equiv \frac{1}{10^{95}}

</math>

<math>10^{96}\cdot\left(10 - 10^{1-7}\right) \equiv 9.999999 \cdot 10^{96}</math>
decimal64 10 16 −383 384 <math>10^{-383} \equiv \frac{1}{10^{383}}

</math>

<math>10^{384}\cdot\left(10 - 10^{1-16}\right)</math>
decimal128 10 34 −6143 6144 <math>10^{-6143} \equiv \frac{1}{10^{6143}}

</math>

<math>10^{6144}\cdot\left(10 - 10^{1-34}\right)</math>

For example, in the smallest decimal format in the table (decimal32), the range of positive normal numbers is 10−95 through 9.999999 × 1096.

Non-zero numbers smaller in magnitude than the smallest normal number are called subnormal numbers (or denormal numbers).

Zero is considered neither normal nor subnormal.

See alsoEdit

ReferencesEdit

<references />