Perfect field
Template:Short description In algebra, a field k is perfect if any one of the following equivalent conditions holds:
- Every irreducible polynomial over k has no multiple roots in any field extension F/k.
- Every irreducible polynomial over k has non-zero formal derivative.
- Every irreducible polynomial over k is separable.
- Every finite extension of k is separable.
- Every algebraic extension of k is separable.
- Either k has characteristic 0, or, when k has characteristic Template:Nowrap, every element of k is a pth power.
- Either k has characteristic 0, or, when k has characteristic Template:Nowrap, the Frobenius endomorphism Template:Nowrap is an automorphism of k.
- The separable closure of k is algebraically closed.
- Every reduced commutative k-algebra A is a separable algebra; i.e., <math>A \otimes_k F</math> is reduced for every field extension F/k. (see below)
Otherwise, k is called imperfect.
In particular, all fields of characteristic zero and all finite fields are perfect.
Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields (see third condition above).
Another important property of perfect fields is that they admit Witt vectors.
More generally, a ring of characteristic p (p a prime) is called perfect if the Frobenius endomorphism is an automorphism.<ref>Template:Harvnb, Section II.4</ref> (When restricted to integral domains, this is equivalent to the above condition "every element of k is a pth power".)
ExamplesEdit
Examples of perfect fields are:
- every field of characteristic zero, so <math>\mathbb{Q}</math> and every finite extension, and <math>\mathbb{C}</math>;<ref>Examples of fields of characteristic zero include the field of rational numbers, the field of real numbers or the field of complex numbers.</ref>
- every finite field <math>\mathbb{F}_q</math>;<ref>Any finite field of order q may be denoted <math>\mathbf{F}_{q}</math>, where q = pTemplate:I sup for some prime p and positive integer k.</ref>
- every algebraically closed field;
- the union of a set of perfect fields totally ordered by extension;
- fields algebraic over a perfect field.
Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic Template:Nowrap. Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect.
An example of an imperfect field is the field <math>\mathbf{F}_p(x)</math> of rational polynomials in an unknown element <math>x</math>. This can be seen from the fact that the Frobenius endomorphism sends <math>x \mapsto x^p</math> and therefore is not surjective. Equivalently, one can show that the polynomial <math>f(X)=X^p-x</math>, which is an element of <math>(\mathbf{F}_p(x))[X] </math>, is irreducible but inseparable.
This field embeds into the perfect field
- <math>\mathbf{F}_q(x,x^{1/p},x^{1/p^2},\ldots)</math>
called its perfection. Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example,<ref>Template:Cite book</ref> consider <math>f(x,y) = x^p + ay^p \in k[x,y]</math> for <math>k</math> an imperfect field of characteristic <math>p</math> and a not a p-th power in k. Then in its algebraic closure <math>k^{\operatorname{alg}}[x,y]</math>, the following equality holds:
- <math>
f(x,y) = (x + b y)^p , </math> where bTemplate:I sup = a and such b exists in this algebraic closure. Geometrically, this means that <math>f</math> does not define an affine plane curve in <math>k[x,y]</math>.
Field extension over a perfect fieldEdit
Any finitely generated field extension K over a perfect field k is separably generated, i.e. admits a separating transcendence base, that is, a transcendence base Γ such that K is separably algebraic over k(Γ).<ref>Matsumura, Theorem 26.2</ref>
Perfect closure and perfectionEdit
One of the equivalent conditions says that, in characteristic p, a field adjoined with all pTemplate:I sup-th roots (Template:Nowrap) is perfect; it is called the perfect closure of k and usually denoted by <math>k^{p^{-\infty}}</math>.
The perfect closure can be used in a test for separability. More precisely, a commutative k-algebra A is separable if and only if <math>A \otimes_k k^{p^{-\infty}}</math> is reduced.<ref>Template:Harvnb</ref>
In terms of universal properties, the perfect closure of a ring A of characteristic p is a perfect ring Ap of characteristic p together with a ring homomorphism Template:Nowrap such that for any other perfect ring B of characteristic p with a homomorphism Template:Nowrap there is a unique homomorphism Template:Nowrap such that v factors through u (i.e. Template:Nowrap). The perfect closure always exists; the proof involves "adjoining p-th roots of elements of A", similar to the case of fields.<ref>Template:Harvnb, Section V.5.1.4, page 111</ref>
The perfection of a ring A of characteristic p is the dual notion (though this term is sometimes used for the perfect closure). In other words, the perfection R(A) of A is a perfect ring of characteristic p together with a map Template:Nowrap such that for any perfect ring B of characteristic p equipped with a map Template:Nowrap, there is a unique map Template:Nowrap such that φ factors through θ (i.e. Template:Nowrap). The perfection of A may be constructed as follows. Consider the projective system
- <math>\cdots\rightarrow A\rightarrow A\rightarrow A\rightarrow\cdots</math>
where the transition maps are the Frobenius endomorphism. The inverse limit of this system is R(A) and consists of sequences (x0, x1, ... ) of elements of A such that <math>x_{i+1}^p=x_i</math> for all i. The map Template:Nowrap sends (xi) to x0.<ref>Template:Harvnb, section 4.2</ref>
See alsoEdit
NotesEdit
ReferencesEdit
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Lang Algebra
- Template:Citation
- Template:Citation