Template:Short description

{{#invoke:Infobox|infobox}}Template:Template other

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed.

General propertiesEdit

File:Regular star polygons.svg
Regular convex and star polygons with 3 to 12 vertices labelled with their Schläfli symbols

These properties apply to all regular polygons, whether convex or star:

  • Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon.
  • A regular n-sided polygon can be constructed with origami if and only if <math>n = 2^{a} 3^{b} p_1 \cdots p_r</math> for some <math>r \in \mathbb{N}</math>, where each distinct <math>p_i</math> is a Pierpont prime.<ref>Template:Cite thesis</ref>

SymmetryEdit

The symmetry group of an n-sided regular polygon is the dihedral group Dn (of order 2n): D2, D3, D4, ... It consists of the rotations in Cn, together with reflection symmetry in n axes that pass through the center. If n is even then half of these axes pass through two opposite vertices, and the other half through the midpoint of opposite sides. If n is odd then all axes pass through a vertex and the midpoint of the opposite side.

Regular convex polygonsEdit

All regular simple polygons (a simple polygon is one that does not intersect itself anywhere) are convex. Those having the same number of sides are also similar.

An n-sided convex regular polygon is denoted by its Schläfli symbol <math>\{n\}</math>. For <math>n<3</math>, we have two degenerate cases:

Monogon {1}
Degenerate in ordinary space. (Most authorities do not regard the monogon as a true polygon, partly because of this, and also because the formulae below do not work, and its structure is not that of any abstract polygon.)
Digon {2}; a "double line segment"
Degenerate in ordinary space. (Some authoritiesTemplate:Weasel inline do not regard the digon as a true polygon because of this.)

In certain contexts all the polygons considered will be regular. In such circumstances it is customary to drop the prefix regular. For instance, all the faces of uniform polyhedra must be regular and the faces will be described simply as triangle, square, pentagon, etc.

File:Annuli with same area around unit regular polygons.svg
As a corollary of the annulus chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is Template:Pi/4

AnglesEdit

For a regular convex n-gon, each interior angle has a measure of:

<math>\frac{180(n - 2)}{n}</math> degrees;
<math>\frac{(n - 2)\pi}{n}</math> radians; or
<math>\frac{(n - 2)}{2n}</math> full turns,

and each exterior angle (i.e., supplementary to the interior angle) has a measure of <math>\tfrac{360}{n}</math> degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn.

As n approaches infinity, the internal angle approaches 180 degrees. For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line (see apeirogon). For this reason, a circle is not a polygon with an infinite number of sides.

DiagonalsEdit

For <math>n>2</math>, the number of diagonals is <math>\tfrac{1}{2}n(n - 3)</math>; i.e., 0, 2, 5, 9, ..., for a triangle, square, pentagon, hexagon, ... . The diagonals divide the polygon into 1, 4, 11, 24, ... pieces.Template:Efn

For a regular n-gon inscribed in a circle of radius <math>1</math>, the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n.

Points in the planeEdit

For a regular simple Template:Mvar-gon with circumradius Template:Mvar and distances Template:Mvar from an arbitrary point in the plane to the vertices, we have<ref>Park, Poo-Sung. "Regular polytope distances", Forum Geometricorum 16, 2016, 227-232. http://forumgeom.fau.edu/FG2016volume16/FG201627.pdf</ref>

<math>\frac{1}{n}\sum_{i=1}^n d_i^4 + 3R^4 = \biggl(\frac{1}{n}\sum_{i=1}^n d_i^2 + R^2\biggr)^2.</math>

For higher powers of distances <math>d_i</math> from an arbitrary point in the plane to the vertices of a regular Template:Mvar-gon, if

<math>S^{(2m)}_{n}=\frac 1n\sum_{i=1}^n d_i^{2m}</math>,

then<ref name=Mamuka >Template:Cite journal</ref>

<math>S^{(2m)}_{n} = \left(S^{(2)}_{n}\right)^m + \sum_{k=1}^{\left\lfloor m/2\right\rfloor}\binom{m}{2k}\binom{2k}{k}R^{2k}\left(S^{(2)}_{n} - R^2\right)^k\left(S^{(2)}_{n}\right)^{m-2k}</math>,

and

<math> S^{(2m)}_{n} = \left(S^{(2)}_{n}\right)^m + \sum_{k=1}^{\left\lfloor m/2\right\rfloor}\frac{1}{2^k}\binom{m}{2k}\binom{2k}{k} \left(S^{(4)}_{n} -\left(S^{(2)}_{n}\right)^2\right)^k\left(S^{(2)}_{n}\right)^{m-2k}</math>,

where Template:Mvar is a positive integer less than Template:Mvar.

If Template:Mvar is the distance from an arbitrary point in the plane to the centroid of a regular Template:Mvar-gon with circumradius Template:Mvar, then<ref name= Mamuka />

<math>\sum_{i=1}^n d_i^{2m}=n\left(\left(R^2+L^2\right)^m+ \sum_{k=1}^{\left\lfloor m/2\right\rfloor}\binom{m}{2k}\binom{2k}{k}R^{2k}L^{2k}\left(R^2+L^2\right)^{m-2k}\right)</math>,

where <math>m = 1, 2, \dots, n - 1</math>.

Interior pointsEdit

For a regular Template:Mvar-gon, the sum of the perpendicular distances from any interior point to the Template:Mvar sides is Template:Mvar times the apothem<ref name=Johnson>Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).</ref>Template:Rp (the apothem being the distance from the center to any side). This is a generalization of Viviani's theorem for the n = 3 case.<ref>Pickover, Clifford A, The Math Book, Sterling, 2009: p. 150</ref><ref>Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", The College Mathematics Journal 37(5), 2006, pp. 390–391.</ref>

CircumradiusEdit

The circumradius R from the center of a regular polygon to one of the vertices is related to the side length s or to the apothem a by

<math>R = \frac{s}{2 \sin\left(\frac{\pi}{n}\right)} = \frac{a}{\cos\left(\frac{\pi}{n} \right)} \quad_,\quad a = \frac{s}{2 \tan\left(\frac{\pi}{n}\right)}</math>

For constructible polygons, algebraic expressions for these relationships exist Template:Xref.

The sum of the perpendiculars from a regular n-gon's vertices to any line tangent to the circumcircle equals n times the circumradius.<ref name=Johnson/>Template:Rp

The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR2 where R is the circumradius.<ref name=Johnson/>Template:Rp

The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR2Template:Sfracns2, where s is the side length and R is the circumradius.<ref name=Johnson/>Template:Rp

If <math>d_i</math> are the distances from the vertices of a regular <math>n</math>-gon to any point on its circumcircle, then <ref name= Mamuka />

<math>3\biggl(\sum_{i=1}^n d_i^2\biggr)^2 = 2n \sum_{i=1}^n d_i^4 </math>.

DissectionsEdit

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into <math>\tbinom{m}{2}</math> or Template:Nowrap parallelograms. These tilings are contained as subsets of vertices, edges and faces in orthogonal projections m-cubes.<ref>Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141</ref> In particular, this is true for any regular polygon with an even number of sides, in which case the parallelograms are all rhombi. The list Template:OEIS2C gives the number of solutions for smaller polygons.

Example dissections for select even-sided regular polygons
File:6-gon rhombic dissection.svg File:8-gon rhombic dissection.svg File:Sun decagon.svg File:12-gon rhombic dissection.svg File:14-gon-dissection-star.svg File:16-gon rhombic dissection.svg
Sides 6 8 10 12 14 16
Rhombs 3 6 10 15 21 28
File:18-gon-dissection-star.svg File:20-gon rhombic dissection.svg File:24-gon rhombic dissection.svg File:30-gon-dissection-star.svg File:40-gon rhombic dissection.svg File:50-gon-dissection-star.svg
Sides 18 20 24 30 40 50
Rhombs 36 45 66 105 190 300

AreaEdit

The area A of a convex regular n-sided polygon having side s, circumradius R, apothem a, and perimeter p is given by<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> <math display="block">\begin{align} A &= \tfrac{1}{2}nsa \\

 &= \tfrac{1}{2}pa \\
 &= \tfrac{1}{4}ns^2\cot\left(\tfrac{\pi}{n}\right) \\
 &= na^2\tan\left(\tfrac{\pi}{n}\right) \\
 &= \tfrac{1}{2}nR^2\sin\left(\tfrac{2\pi}{n}\right)

\end{align}</math>

For regular polygons with side s = 1, circumradius R = 1, or apothem a = 1, this produces the following table:Template:Efn (Since <math>\scriptstyle \cot x \rightarrow 1/x</math> as <math>\scriptstyle x \rightarrow 0</math>, the area when <math>\scriptstyle s = 1</math> tends to <math>\scriptstyle n^2/4\pi</math> as <math>\scriptstyle n</math> grows large.)

rowspan="2" Template:Verth Area when side s = 1 Area when circumradius R = 1 Area when apothem a = 1
Exact ApproxiTemplate:Shymation Exact ApproxiTemplate:Shymation Relative to circumTemplate:Shycircle area Exact ApproxiTemplate:Shymation Relative to inTemplate:Shycircle area
n <math>\scriptstyle \tfrac{n}{4}\cot\left(\tfrac{\pi}{n}\right)</math> <math>\scriptstyle \tfrac{n}{2}\sin\left(\tfrac{2\pi}{n}\right)</math> <math>\scriptstyle \tfrac{n}{2\pi}\sin\left(\tfrac{2\pi}{n}\right)</math> <math>\scriptstyle n \tan\left(\tfrac{\pi}{n}\right)</math> <math>\scriptstyle \tfrac{n}{\pi}\tan\left(\tfrac{\pi}{n}\right)</math>
3 Template:Tmath 0.433012702 Template:Tmath 1.299038105 0.4134966714 Template:Tmath 5.196152424 1.653986686
4 1 1.000000000 2 2.000000000 0.6366197722 4 4.000000000 1.273239544
5 Template:Tmath 1.720477401 Template:Tmath 2.377641291 0.7568267288 Template:Tmath 3.632712640 1.156328347
6 Template:Tmath 2.598076211 Template:Tmath 2.598076211 0.8269933428 Template:Tmath 3.464101616 1.102657791
7 3.633912444 2.736410189 0.8710264157 3.371022333 1.073029735
8 Template:Tmath 4.828427125 Template:Tmath 2.828427125 0.9003163160 Template:Tmath 3.313708500 1.054786175
9 6.181824194 2.892544244 0.9207254290 3.275732109 1.042697914
10 Template:Tmath 7.694208843 Template:Tmath 2.938926262 0.9354892840 Template:Tmath 3.249196963 1.034251515
11 9.365639907 2.973524496 0.9465022440 3.229891423 1.028106371
12 Template:Tmath 11.19615242 3 3.000000000 0.9549296586 Template:Tmath 3.215390309 1.023490523
13 13.18576833 3.020700617 0.9615188694 3.204212220 1.019932427
14 15.33450194 3.037186175 0.9667663859 3.195408642 1.017130161
15 Template:Tmath 17.64236291 Template:Tmath 3.050524822 0.9710122088 Template:Tmath 3.188348426 1.014882824
16 Template:Tmath 20.10935797 Template:Tmath 3.061467460 0.9744953584 Template:Tmath 3.182597878 1.013052368
17 22.73549190 3.070554163 0.9773877456 3.177850752 1.011541311
18 25.52076819 3.078181290 0.9798155361 3.173885653 1.010279181
19 28.46518943 3.084644958 0.9818729854 3.170539238 1.009213984
20 Template:Tmath 31.56875757 Template:Tmath 3.090169944 0.9836316430 Template:Tmath 3.167688806 1.008306663
100 795.5128988 3.139525977 0.9993421565 3.142626605 1.000329117
1000 79577.20975 3.141571983 0.9999934200 3.141602989 1.000003290
[[Regular myriagon|Template:10^]] 7957746.893 3.141592448 0.9999999345 3.141592757 1.000000033
[[Regular megagon|Template:10^]] 79577471545 3.141592654 1.000000000 3.141592654 1.000000000
File:Polygons comparison.png
Comparison of sizes of regular polygons with the same edge length, from three to sixty sides. The size increases without bound as the number of sides approaches infinity.

Of all n-gons with a given perimeter, the one with the largest area is regular.<ref>Chakerian, G.D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>

Constructible polygonEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides,<ref name=Bold/>Template:Rp and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.<ref name=Bold>Bold, Benjamin. Famous Problems of Geometry and How to Solve Them, Dover Publications, 1982 (orig. 1969).</ref>Template:Rp This led to the question being posed: is it possible to construct all regular n-gons with compass and straightedge? If not, which n-gons are constructible and which are not?

Carl Friedrich Gauss proved the constructibility of the regular 17-gon in 1796. Five years later, he developed the theory of Gaussian periods in his Disquisitiones Arithmeticae. This theory allowed him to formulate a sufficient condition for the constructibility of regular polygons:

A regular n-gon can be constructed with compass and straightedge if n is the product of a power of 2 and any number of distinct Fermat primes (including none).

(A Fermat prime is a prime number of the form <math>2^{\left(2^n\right)} + 1.</math>) Gauss stated without proof that this condition was also necessary, but never published his proof. A full proof of necessity was given by Pierre Wantzel in 1837. The result is known as the Gauss–Wantzel theorem.

Equivalently, a regular n-gon is constructible if and only if the cosine of its common angle is a constructible number—that is, can be written in terms of the four basic arithmetic operations and the extraction of square roots.

Template:AnchorRegular skew polygonsEdit

File:Cube petrie polygon sideview.svg
The cube contains a skew regular hexagon, seen as 6 red edges zig-zagging between two planes perpendicular to the cube's diagonal axis.
File:Antiprism17.jpg
The zig-zagging side edges of a n-antiprism represent a regular skew 2n-gon, as shown in this 17-gonal antiprism.

A regular skew polygon in 3-space can be seen as nonplanar paths zig-zagging between two parallel planes, defined as the side-edges of a uniform antiprism. All edges and internal angles are equal.

File:Petrie polygons.png
The Platonic solids (the tetrahedron, cube, octahedron, dodecahedron, and icosahedron) have Petrie polygons, seen in red here, with sides 4, 6, 6, 10, and 10 respectively.

More generally regular skew polygons can be defined in n-space. Examples include the Petrie polygons, polygonal paths of edges that divide a regular polytope into two halves, and seen as a regular polygon in orthogonal projection.

In the infinite limit regular skew polygons become skew apeirogons.

Regular star polygonsEdit

{{#invoke:Infobox|infobox}}Template:Template other

A non-convex regular polygon is a regular star polygon. The most common example is the pentagram, which has the same vertices as a pentagon, but connects alternating vertices.

For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the center m times.

The (non-degenerate) regular stars of up to 12 sides are:

m and n must be coprime, or the figure will degenerate.

The degenerate regular stars of up to 12 sides are:

  • Tetragon – {4/2}
  • Hexagons – {6/2}, {6/3}
  • Octagons – {8/2}, {8/4}
  • Enneagon – {9/3}
  • Decagons – {10/2}, {10/4}, and {10/5}
  • Dodecagons – {12/2}, {12/3}, {12/4}, and {12/6}
Two interpretations of {6/2}
Grünbaum
{6/2} or 2{3}<ref name=Branko>Are Your Polyhedra the Same as My Polyhedra? Branko Grünbaum (2003), Fig. 3</ref>
Coxeter
2{3} or {6}[2{3}]{6}
File:Doubly wound hexagon.svg File:Regular star figure 2(3,1).svg
Doubly-wound hexagon Hexagram as a compound
of two triangles

Depending on the precise derivation of the Schläfli symbol, opinions differ as to the nature of the degenerate figure. For example, {6/2} may be treated in either of two ways:

  • For much of the 20th century (see for example Template:Harvtxt), we have commonly taken the /2 to indicate joining each vertex of a convex {6} to its near neighbors two steps away, to obtain the regular compound of two triangles, or hexagram. Template:ParagraphCoxeter clarifies this regular compound with a notation {kp}[k{p}]{kp} for the compound {p/k}, so the hexagram is represented as {6}[2{3}]{6}.<ref>Regular polytopes, p.95</ref> More compactly Coxeter also writes 2{n/2}, like 2{3} for a hexagram as compound as alternations of regular even-sided polygons, with italics on the leading factor to differentiate it from the coinciding interpretation.<ref>Coxeter, The Densities of the Regular Polytopes II, 1932, p.53</ref>
  • Many modern geometers, such as Grünbaum (2003),<ref name=Branko/> regard this as incorrect. They take the /2 to indicate moving two places around the {6} at each step, obtaining a "double-wound" triangle that has two vertices superimposed at each corner point and two edges along each line segment. Not only does this fit in better with modern theories of abstract polytopes, but it also more closely copies the way in which Poinsot (1809) created his star polygons – by taking a single length of wire and bending it at successive points through the same angle until the figure closed.

Duality of regular polygonsEdit

Template:Expand section Template:See also All regular polygons are self-dual to congruency, and for odd n they are self-dual to identity.

In addition, the regular star figures (compounds), being composed of regular polygons, are also self-dual.

Regular polygons as faces of polyhedraEdit

A uniform polyhedron has regular polygons as faces, such that for every two vertices there is an isometry mapping one into the other (just as there is for a regular polygon).

A quasiregular polyhedron is a uniform polyhedron which has just two kinds of face alternating around each vertex.

A regular polyhedron is a uniform polyhedron which has just one kind of face.

The remaining (non-uniform) convex polyhedra with regular faces are known as the Johnson solids.

A polyhedron having regular triangles as faces is called a deltahedron.

See alsoEdit

NotesEdit

Template:Notelist

ReferencesEdit

Template:Reflist

Further readingEdit

  • Lee, Hwa Young; "Origami-Constructible Numbers".
  • Template:Cite book
  • Grünbaum, B.; Are your polyhedra the same as my polyhedra?, Discrete and comput. geom: the Goodman-Pollack festschrift, Ed. Aronov et al., Springer (2003), pp. 461–488.
  • Poinsot, L.; Memoire sur les polygones et polyèdres. J. de l'École Polytechnique 9 (1810), pp. 16–48.

External linksEdit

{{#invoke:Navbox|navbox}} Template:Polytopes Template:Ancient Greek mathematics