Template:Short description Template:Use dmy dates Template:Automatic taxobox

Sarcopterygii (Template:IPAc-en; Template:Etymology)—sometimes considered synonymous with Crossopterygii (Template:Langx)—is a clade (traditionally a class or subclass) of vertebrate animals which includes a group of bony fish commonly referred to as lobe-finned fish. These vertebrates are characterised by prominent muscular limb buds (lobes) within their fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines supporting the fins.

The tetrapods, a mostly terrestrial clade of vertebrates, are now recognized as having evolved from sarcopterygian ancestors and are most closely related to lungfishes. Their paired pectoral and pelvic fins evolved into limbs, and their foregut diverticulum eventually evolved into air-breathing lungs. Cladistically, this would make the tetrapods a subgroup within Sarcopterygii and thus sarcopterygians themselves. As a result, the phrase "lobe-finned fish" normally refers to not the entire clade but only aquatic members that are not tetrapods, i.e. a paraphyletic group.

Non-tetrapod sarcopterygians were once the dominant predators of freshwater ecosystems during the Carboniferous and Permian periods, but suffered significant decline after the Great Dying. The only known extant non-tetrapod sarcopterygians are the two species of coelacanths and six species of lungfishes.

CharacteristicsEdit

File:Guiyu BW.jpg
Guiyu oneiros, the earliest-known bony fish, lived during the Late Silurian, 419 million years ago).<ref name="Zhao2021"/> It has the combination of both ray-finned and lobe-finned features, although analysis of the totality of its features places it closer to lobe-finned fish.<ref name=Zhu-Zhao-etal-2009/><ref name=Coates-2009/><ref name=Sci-Blog-2009-04-01/>

Early lobe-finned fishes are bony fish with fleshy, lobed, paired fins, which are joined to the body by a single bone.<ref name=Clack-2002/> The fins of lobe-finned fishes differ from those of all other fish in that each is borne on a fleshy, lobelike, scaly stalk extending from the body that resembles a limb bud. The scales of sarcopterygians are true scaloids, consisting of lamellar bone surrounded by layers of vascular bone, cosmine (similar to dentin), and external keratin.<ref name=Kardong-1998/> The physical structure of tetrapodomorphs, fish bearing resemblance to tetrapods, provides valuable insights into the evolutionary shift from aquatic to terrestrial existence.<ref name=Clack-2009/> Pectoral and pelvic fins have articulations resembling those of tetrapod limbs. The first tetrapod land vertebrates, basal amphibian organisms, possessed legs derived from these fins. Sarcopterygians also possess two dorsal fins with separate bases, as opposed to the single dorsal fin in ray-finned fish. The braincase of sarcopterygians primitively has a hinge line, but this is lost in tetrapods and lungfish. Early sarcopterygians commonly exhibit a symmetrical tail, while all sarcopterygians possess teeth that are coated with genuine enamel.

Most species of lobe-finned fishes are extinct. The largest known lobe-finned fish was Rhizodus hibberti from the Carboniferous period of Scotland which may have exceeded 7 meters in length. Among the two groups of living species, the coelacanths and the lungfishes, the largest species is the West Indian Ocean coelacanth, reaching Template:Convert in length and weighing up Template:Convert. The largest lungfish is the marbled lungfish which can reach 2 m (6.6 ft) in length and weigh up to Template:Convert.<ref name=FishBase-2009-Lepidosrndæ/><ref name=Fishing-W-R-Protoptrs/>

ClassificationEdit

Taxonomists who adhere to the cladistic approach include Tetrapoda within Sarcopterygii,<ref name=Nelson-2006/> sometimes under a Linnean rank such as infraclass or division.<ref>Template:Cite journal</ref><ref>Template:Cite book</ref><ref>Template:Cite journal</ref> The fin-limbs found in lobe-finned fishes like the coelacanths display a strong resemblance to the presumed ancestral form of tetrapod limbs. Lobe-finned fishes seemingly underwent two distinct evolutionary paths, leading to their classification into two clades: the Rhipidistia (comprising the Dipnoi, or lungfish, and the Tetrapodomorpha, which includes the Tetrapoda) and the Actinistia (represented by coelacanths).

The extensive fossil record and numerous morphological and molecular studies have shown that lungfish and some fossil lobe-finned fish ("rhipidistians") are more closely related to tetrapods than they are to coelacanths; as a result tetrapods are nested within Sarcopterygii.<ref>Template:Cite book</ref><ref>Template:Cite book</ref> This abides to cladistics in that in order for a group to be valid, it must have an ancestral species and all descendants of that common ancestor based on shared characteristics. As such mammals, sauropsids (birds and "reptiles"), and amphibians are highly derived sarcopterygians despite superficially looking nothing like the standard lobe-finned fish anatomically speaking. However, similarities can be noticed in their limb bones and tooth enamel.<ref>Template:Cite book</ref> Additionally, lungfish and tetrapods share a divided atrium.<ref>Template:Cite book</ref>

Multiple Linnean classifications have been proposed with the explicit intent to incorporate Sarcopterygii as a monophyletic taxon instead of maintaining its traditional paraphyletic definition.<ref>Template:Cite journal</ref><ref>Template:Cite book</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Ahlberg (1991)Edit

Class Osteichthyes

Nelson et al. (2016)Edit

Class Osteichthyes

Betancur-Rodrigues et al. (2017)Edit

Superclass Sarcopterygii

Other classifications do not use Sarcopterygii as a ranked taxon but still nonetheless still reject traditional paraphyletic assemblages. In the scheme below, sarcopterygian groups are marked in bold letters.

Tedersoo (2017)Edit

Phylum Craniata

TaxonomyEdit

The classification below follows Benton (2004),<ref name=Benton-2004/> and uses a synthesis of rank-based Linnaean taxonomy and also reflects evolutionary relationships. Benton included the clade Tetrapoda in the subclass Sarcopterygii in order to reflect the direct descent of tetrapods from lobe-finned fish, despite the former being assigned a higher taxonomic rank.<ref name=Benton-2004/>

Actinistia File:Latimeria Paris.jpg{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }} Actinistia, coelacanths, are a subclass of lobe-finned fishes, all but two of which are species only known through fossils. The subclass Actinistia contains the coelacanths, including the two living coelacanths: the West Indian Ocean coelacanth and the Indonesian coelacanth.
Dipnoi File:Barramunda.jpg{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }} Dipnoi, commonly referred to as lungfish, but also known as salamanderfish,<ref name=Haeckel-1892/> are a subclass of freshwater fish. Lungfish are best known for retaining characteristics primitive within the bony fishes, including the ability to breathe air, and structures primitive within the lobe-finned fishes, including the presence of lobed fins with a well-developed internal skeleton. Today, lungfish live only in Africa, South America, and Australia. While vicariance would suggest this represents an ancient distribution limited to the Mesozoic supercontinent Gondwana, the fossil record suggests advanced lungfish had a widespread freshwater distribution and the current distribution of modern lungfish species reflects extinction of many lineages following the breakup of Pangaea, Gondwana, and Laurasia.
Tetrapodomorpha File:Tiktaalik restoration (side view) by ObsidianSoul 02.png
Advanced tetrapodomorph Tiktaalik
{{safesubst:#invoke:Check for unknown parameters|check|unknown=|preview=Page using Template:Center with unknown parameter "_VALUE_"|ignoreblank=y| 1 | style }}
Tetrapodomorpha, tetrapods and their extinct relatives, are a clade of vertebrates consisting of tetrapods (four-limbed vertebrates) and their closest sarcopterygian relatives that are more closely related to living tetrapods than to living lungfish.<ref name=Amemiya-Alfoldi-etal-2013/> Advanced forms transitional between fish and the early labyrinthodonts, like Tiktaalik, have been referred to as "fishapods" by their discoverers, being half-fish, half-tetrapods, in appearance and limb morphology. The Tetrapodomorpha contain the crown group tetrapods (the last common ancestor of living tetrapods and all of its descendants) and several groups of early stem tetrapods, and several groups of related lobe-finned fishes, collectively known as the osteolepiforms. The Tetrapodamorpha minus the crown group Tetrapoda are the stem tetrapoda, a paraphyletic unit encompassing the fish to tetrapod transition. Among the characters defining tetrapodomorphs are modifications to the fins, notably a humerus with convex head articulating with the glenoid fossa (the socket of the shoulder joint). Tetrapodomorph fossils are known from the early Devonian onwards, and include Osteolepis, Panderichthys, Kenichthys, and Tungsenia.<ref name=Lu-Zhu-Long-etal-2012/>


EvolutionEdit

Template:Multiple image

File:Onychodus.jpg
Tooth from the sarcopterygian Onychodus from the Devonian of Wisconsin

Template:See also Lobe-finned fishes and their sister group, the ray-finned fishes, make up the clade Osteichthyes, characterized by the presence of swim bladders (which share ancestry with lungs) as well as the evolution of ossified endoskeleton instead of cartilages like the skeletons of acanthodians, chondrichthyians and most placoderms. There are otherwise vast differences in fin, respiratory and circulatory structures between the Sarcopterygii and the Actinopterygii, such as the presence of cosmoid layers in the scales of sarcopterygians. The earliest sarcopterygian fossils were found in the uppermost Silurian, about 418 Ma. They closely resembled the acanthodians (the "spiny fish", a taxon that became extinct at the end of the Paleozoic). In the early–middle Devonian (416–385 Ma), while the predatory placoderms dominated the seas, some sarcopterygians came into freshwater habitats.

In the Early Devonian (416–397 Ma), the sarcopterygians, or lobe-finned fishes, split into two main lineages: the coelacanths and the rhipidistians. Coelacanths never left the oceans and their heyday was the late Devonian and Carboniferous, from 385 to 299 Ma, as they were more common during those periods than in any other period in the Phanerozoic. Actinistians, a group within the lobe-finned fish, have been around for almost 380 million years. Over time, researchers have identified 121 species spread across 47 genera. Some species are well-documented in their evolutionary placement, while others are harder to track. The greatest boom in actinistian diversity happened during the Early Triassic, just after the Great Dying.<ref name=Cloutier-1991 /> Coelacanths of the genus Latimeria still live today in the open oceans and retained many primordial features of ancient sarcopterygians, earning them a reputation as living fossils.

The rhipidistians, whose ancestors probably lived in the oceans near river mouths and estuaries, left the marine world and migrated into freshwater habitats. They then split into two major groups: the lungfish and the tetrapodomorphs, and both of them evolved their swim bladders into air-breathing lungs. Lungfish radiated into their greatest diversity during the Triassic period; today, fewer than a dozen genera remain, having evolved the first proto-lungs and proto-limbs, adapting to living outside a submerged water environment by the middle Devonian (397–385 Ma). The tetrapodomorphs, on the other hand, evolved into the fully-limbed stegocephalians and later the fully terrestrial tetrapods during the Late Devonian, when the Late Devonian Extinction bottlenecked and selected against the more aquatically adapted groups among stem-tetrapods.<ref>Template:Cite book</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The surviving tetrapods then underwent adaptive radiation on dry land and become the dominant terrestrial animals during the Carboniferous and the Permian periods.

Hypotheses for means of pre-adaptationEdit

There are three major hypotheses as to how lungfish evolved their stubby fins (proto-limbs).

Shrinking waterhole
The first, traditional explanation is the "shrinking waterhole hypothesis", or "desert hypothesis", posited by the American paleontologist Alfred Romer, who believed that limbs and lungs may have evolved from the necessity of having to find new bodies of water as old waterholes dried up.<ref name=Sci-2_0-2011-12-27/>
Inter-tidal adaptation
Niedźwiedzki, Szrek, Narkiewicz, et al. (2010)<ref name="Niedźw-Szrek-etal-2010"/> proposed a second, the "inter-tidal hypothesis": That sarcopterygians may have first emerged unto land from intertidal zones rather than inland bodies of water, based on the discovery of the 395 million-year-old Zachełmie tracks, the oldest discovered fossil evidence of tetrapods.<ref name="Niedźw-Szrek-etal-2010"/><ref name=Barley-2010-01-06/>
Woodland swamp adaptation
Retallack (2011)<ref name=Retallack-2011/> proposed a third hypothesis is dubbed the "woodland hypothesis": Retallack argues that limbs may have developed in shallow bodies of water, in woodlands, as a means of navigating in environments filled with roots and vegetation. He based his conclusions on the evidence that transitional tetrapod fossils are consistently found in habitats that were formerly humid and wooded floodplains.<ref name=Sci-2_0-2011-12-27/><ref name=Retallack-2011/>
Habitual escape onto land
A fourth, minority hypothesis posits that advancing onto land achieved more safety from predators, less competition for prey, and certain environmental advantages not found in water—such as oxygen concentration,Template:Refn and temperature controlTemplate:Refn—implying that organisms developing limbs were also adapting to spending some of their time out of water. However, studies have found that sarcopterygians developed tetrapod-like limbs suitable for walking well before venturing onto land.Template:Refn This suggests they adapted to walking on the ground-bed under water before they advanced onto dry land.

History through to the end-Permian extinctionEdit

The first tetrapodomorphs, which included the gigantic rhizodonts, had the same general anatomy as the lungfish, who were their closest kin, but they appear not to have left their water habitat until the late Devonian epoch (385–359 Ma), with the appearance of tetrapods (four-legged vertebrates). Tetrapods and megalichthyids are the only tetrapodomorphs which survived after the Devonian, with the latter group disappearing during the Permian.<ref name="Witzmann2012">Template:Cite journal</ref>

Non-tetrapod sarcopterygians continued until towards the end of Paleozoic era, suffering heavy losses during the Permian–Triassic extinction event (251 Ma).

PhylogenyEdit

The cladogram presented below is based on studies compiled by Janvier et al. (1997) for the Tree of Life Web Project,<ref name=Janvier-1997-01-01-Vertbrt/> Mikko's Phylogeny Archive<ref name=Haaramo-2003-Sarcoptrg/> and Swartz (2012).<ref name=Swartz-2012/>

Template:Clade

File:Life restoration of Sparalepis tingi.tiff
Life restoration of Sparalepis tingi and other fauna from the Silurian of Yunnan

See alsoEdit

FootnotesEdit

Template:Notelist


ReferencesEdit

Template:Reflist

  • Cloutier, R., & Forey, P. L. (1991). Diversity of extinct and living actinistian fishes (Sarcopterygii). In J. A. Musick, M. N. Bruton, & E. K. Balon (Eds.), The biology of Latimeriachalumnae and evolution of coelacanths (pp. 59–74). Springer Netherlands. {{#invoke:doi|main}}

Template:Chordata Template:Sarcopterygii Template:Gnathostomata Template:Evolution of fish Template:Fins, limbs and wings Template:Taxonbar Template:Authority control