Series expansion
Template:Short description Template:More citations neededTemplate:Unreliable sources
In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division).<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation involving Big O notation (see also asymptotic expansion). The series expansion on an open interval will also be an approximation for non-analytic functions.<ref>Template:Cite book</ref>Template:Verify source
Types of series expansionsEdit
There are several kinds of series expansions, listed below.
Taylor seriesEdit
A Taylor series is a power series based on a function's derivatives at a single point.<ref name=":1">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> More specifically, if a function <math>f: U\to\R</math> is infinitely differentiable around a point <math>x_0</math>, then the Taylor series of f around this point is given by
<math>\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x - x_0)^n</math>
under the convention <math>0^0 := 1</math>.<ref name=":1" /><ref name=":2">Template:Cite book</ref> The Maclaurin series of f is its Taylor series about <math>x_0 = 0</math>.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name=":2" />
Laurent seriesEdit
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form <math display="inline">\sum_{k = -\infty}^{\infty} c_k (z - a)^k</math> and converges in an annulus.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
Dirichlet seriesEdit
A general Dirichlet series is a series of the form <math display="inline">\sum_{n = 1}^{\infty} a_ne^{-\lambda_n s}.</math> One important special case of this is the ordinary Dirichlet series <math display="inline">\sum_{n = 1}^{\infty}\frac{a_n}{n^s}.</math><ref name=":3">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Used in number theory.Template:Citation needed
Fourier seriesEdit
A Fourier series is an expansion of periodic functions as a sum of many sine and cosine functions.<ref name=":4">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> More specifically, the Fourier series of a function <math>f(x)</math> of period <math>2L</math> is given by the expression<math display="block">a_0 + \sum_{n = 1}^{\infty} \left[a_n\cos\left(\frac{n\pi x}{L}\right) + b_n\sin\left(\frac{n\pi x}{L}\right)\right]</math>where the coefficients are given by the formulae<ref name=":4" /><ref>Template:Cite book</ref><math display="block">\begin{align} a_n &:= \frac{1}{L}\int_{-L}^L f(x)\cos\left(\frac{n\pi x}{L}\right)dx, \\ b_n &:= \frac{1}{L}\int_{-L}^L f(x)\sin\left(\frac{n\pi x}{L}\right)dx. \end{align}</math>
Other seriesEdit
- In acoustics, e.g., the fundamental tone and the overtones together form an example of a Fourier series.Template:Citation needed
- Legendre polynomials: Used in physics to describe an arbitrary electrical field as a superposition of a dipole field, a quadrupole field, an octupole field, etc.Template:Citation needed
- Zernike polynomials: Used in optics to calculate aberrations of optical systems. Each term in the series describes a particular type of aberration.Template:Citation needed
- The Stirling series<math display=block>\text{Ln}\Gamma\left(z\right)\sim\left(z-\tfrac{1}{2}\right)\ln z-z+\tfrac{1}{2}\ln\left(2\pi\right)+\sum_{k=1}^{\infty}\frac{B_{2k}}{2k(2k-1)z^{2k-1}}</math>is an approximation of the log-gamma function.<ref>{{#invoke:citation/CS1|citation
|CitationClass=web }}</ref>
ExamplesEdit
The following is the Taylor series of <math>e^x</math>:<math display="block">e^x=\sum^{\infty}_{n=0}\frac{x^n}{n!}= 1 + x + \frac{x^2}{2} + \frac{x^3}{6}...</math><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
The Dirichlet series of the Riemann zeta function is<math display="block">\zeta(s) := \sum_{n = 1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \cdots</math><ref name=":3" />
ReferencesEdit
<references />