Template:Short description In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every nonempty irreducible closed subset has a unique generic point.

DefinitionsEdit

Sober spaces have a variety of cryptomorphic definitions, which are documented in this section.<ref name=sheavesgeometrylogic>Template:Cite book</ref><ref name="nets">Template:Cite journal</ref> In each case below, replacing "unique" with "at most one" gives an equivalent formulation of the T0 axiom. Replacing it with "at least one" is equivalent to the property that the T0 quotient of the space is sober, which is sometimes referred to as having "enough points" in the literature.

With irreducible closed setsEdit

A closed set is irreducible if it cannot be written as the union of two proper closed subsets. A space is sober if every nonempty irreducible closed subset is the closure of a unique point.

In terms of morphisms of frames and localesEdit

A topological space X is sober if every map from its partially ordered set of open subsets to <math>\{0,1\}</math> that preserves all joins and all finite meets is the inverse image of a unique continuous function from the one-point space to X.

This may be viewed as a correspondence between the notion of a point in a locale and a point in a topological space, which is the motivating definition.

Using completely prime filtersEdit

A filter F of open sets is said to be completely prime if for any family <math>O_i</math> of open sets such that <math>\bigcup_i O_i \in F</math>, we have that <math>O_i \in F</math> for some i. A space X is sober if each completely prime filter is the neighbourhood filter of a unique point in X.

In terms of netsEdit

A net <math>x_{\bullet}</math> is self-convergent if it converges to every point <math>x_i</math> in <math>x_{\bullet}</math>, or equivalently if its eventuality filter is completely prime. A net <math>x_{\bullet}</math> that converges to <math>x</math> converges strongly if it can only converge to points in the closure of <math>x</math>. A space is sober if every self-convergent net <math>x_{\bullet}</math> converges strongly to a unique point <math>x</math>.<ref name="nets"/>

In particular, a space is T1 and sober precisely if every self-convergent net is constant.

As a property of sheaves on the spaceEdit

A space X is sober if every functor from the category of sheaves Sh(X) to Set that preserves all finite limits and all small colimits must be the stalk functor of a unique point x.

Properties and examplesEdit

Any Hausdorff (T2) space is sober (the only irreducible subsets being singletons), and all sober spaces are Kolmogorov (T0), and both implications are strict.<ref name=egt>Template:Cite book</ref>

Sobriety is not comparable to the T1 condition:

  • an example of a T1 space that is not sober is an infinite set with the cofinite topology, the whole space being an irreducible closed subset with no generic point;
  • an example of a sober space that is not T1 is the Sierpinski space.

Moreover, T2 is strictly stronger than T1 and sober, i.e., while every T2 space is at once T1 and sober, there exist spaces that are simultaneously T1 and sober, but not T2. One such example is the following: let X be the set of real numbers, with a new point p adjoined; the open sets being all real open sets, and all cofinite sets containing p.

Sobriety of X is precisely a condition that forces the lattice of open subsets of X to determine X up to homeomorphism, which is relevant to pointless topology.

Sobriety makes the specialization preorder a directed complete partial order.

Every continuous directed complete poset equipped with the Scott topology is sober.

Finite T0 spaces are sober.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

The prime spectrum Spec(R) of a commutative ring R with the Zariski topology is a compact sober space.<ref name=egt/> In fact, every spectral space (i.e. a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the topology) is homeomorphic to Spec(R) for some commutative ring R. This is a theorem of Melvin Hochster.<ref name=Hoch>Template:Citation</ref> More generally, the underlying topological space of any scheme is a sober space.

The subset of Spec(R) consisting only of the maximal ideals, where R is a commutative ring, is not sober in general.

See alsoEdit

ReferencesEdit

Template:Reflist

Further readingEdit