Superstrong cardinal
In mathematics, a cardinal number κ is called superstrong if and only if there exists an elementary embedding j : V → M from V into a transitive inner model M with critical point κ and <math>V_{j(\kappa)}</math> ⊆ M.
Similarly, a cardinal κ is n-superstrong if and only if there exists an elementary embedding j : V → M from V into a transitive inner model M with critical point κ and <math>V_{j^n(\kappa)}</math> ⊆ M. Akihiro Kanamori has shown that the consistency strength of an n+1-superstrong cardinal exceeds that of an n-huge cardinal for each n > 0.