True anomaly
Template:Astrodynamics In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits).
The true anomaly is usually denoted by the Greek letters Template:Mvar or Template:Mvar, or the Latin letter Template:Mvar, and is usually restricted to the range 0–360° (0–2π rad).
The true anomaly Template:Mvar is one of three angular parameters (anomalies) that can be used to define a position along an orbit, the other three being the eccentric anomaly and the mean anomaly.
FormulasEdit
From state vectorsEdit
For elliptic orbits, the true anomaly Template:Mvar can be calculated from orbital state vectors as:
- <math> \nu = \arccos { {\mathbf{e} \cdot \mathbf{r}} \over { \mathbf{\left |e \right |} \mathbf{\left |r \right |} }}</math>
- (if Template:Nowrap then replace Template:Mvar by Template:Nowrap)
where:
- v is the orbital velocity vector of the orbiting body,
- e is the eccentricity vector,
- r is the orbital position vector (segment FP in the figure) of the orbiting body.
Circular orbitEdit
For circular orbits the true anomaly is undefined, because circular orbits do not have a uniquely determined periapsis. Instead the argument of latitude u is used:
- <math> u = \arccos { {\mathbf{n} \cdot \mathbf{r}} \over { \mathbf{\left |n \right |} \mathbf{\left |r \right |} }}</math>
- (if Template:Nowrap then replace Template:Nowrap)
where:
- n is a vector pointing towards the ascending node (i.e. the z-component of n is zero).
- rz is the z-component of the orbital position vector r
Circular orbit with zero inclinationEdit
For circular orbits with zero inclination the argument of latitude is also undefined, because there is no uniquely determined line of nodes. One uses the true longitude instead:
- <math> l = \arccos { r_x \over { \mathbf{\left |r \right |}}}</math>
- (if Template:Nowrap then replace Template:Mvar by Template:Nowrap)
where:
- rx is the x-component of the orbital position vector r
- vx is the x-component of the orbital velocity vector v.
From the eccentric anomalyEdit
The relation between the true anomaly Template:Mvar and the eccentric anomaly <math>E</math> is:
- <math>\cos{\nu} = {{\cos{E} - e} \over {1 - e \cos{E}}}</math>
or using the sine<ref>Fundamentals of Astrodynamics and Applications by David A. Vallado</ref> and tangent:
- <math>\begin{align}
\sin{\nu} &= {{\sqrt{1 - e^2\,} \sin{E}} \over {1 - e \cos{E}}} \\[4pt] \tan{\nu} = {{\sin{\nu}} \over {\cos{\nu}}} &= {{\sqrt{1 - e^2\,} \sin{E}} \over {\cos{E} -e}}
\end{align}</math>
or equivalently:
- <math>\tan{\nu \over 2} = \sqrt{{{1 + e\,} \over {1-e\,}}} \tan{E \over 2}</math>
so
- <math>\nu = 2 \, \operatorname{arctan}\left(\, \sqrt{{{1 + e\,} \over {1 - e\,}}} \tan{E \over 2} \, \right)</math>
Alternatively, a form of this equation was derived by <ref>Template:Cite journal</ref> that avoids numerical issues when the arguments are near <math>\pm\pi</math>, as the two tangents become infinite. Additionally, since <math>\frac{E}{2}</math> and <math>\frac{\nu}{2}</math> are always in the same quadrant, there will not be any sign problems.
- <math>\tan{\frac{1}{2}(\nu - E)} = \frac{\beta\sin{E}}{1 - \beta\cos{E}}</math> where <math> \beta = \frac{e}{1 + \sqrt{1 - e^2}} </math>
so
- <math>\nu = E + 2\operatorname{arctan}\left(\,\frac{\beta\sin{E}}{1 - \beta\cos{E}}\,\right)</math>
From the mean anomalyEdit
The true anomaly can be calculated directly from the mean anomaly <math>M</math> via a Fourier expansion:<ref name="Battin 1999 p. 212">Template:Cite book</ref>
- <math>\nu = M + 2 \sum_{k=1}^{\infty}\frac{1}{k} \left[ \sum_{n=-\infty}^{\infty} J_n(-ke)\beta^{|k+n|} \right] \sin{kM}</math>
with Bessel functions <math>J_n</math> and parameter <math>\beta = \frac{1-\sqrt{1-e^2}}{e}</math>.
Omitting all terms of order <math>e^4</math> or higher (indicated by <math>\operatorname{\mathcal{O}}\left(e^4\right)</math>), it can be written as<ref name="Battin 1999 p. 212"/><ref name="Smart p. ">Template:Cite book</ref><ref>Template:Cite book</ref>
- <math>\nu = M + \left(2e - \frac{1}{4} e^3\right) \sin{M} + \frac{5}{4} e^2 \sin{2M} + \frac{13}{12} e^3 \sin{3M} + \operatorname{\mathcal{O}}\left(e^4\right).</math>
Note that for reasons of accuracy this approximation is usually limited to orbits where the eccentricity <math>e</math> is small.
The expression <math>\nu - M</math> is known as the equation of the center, where more details about the expansion are given.
Radius from true anomalyEdit
The radius (distance between the focus of attraction and the orbiting body) is related to the true anomaly by the formula
- <math>r(t) = a\,{1 - e^2 \over 1 + e \cos\nu(t)}\,\!</math>
where a is the orbit's semi-major axis.
In celestial mechanics, Projective anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body in the projective space.
The projective anomaly is usually denoted by the <math>\theta</math> and is usually restricted to the range 0 - 360 degree (0 - 2 <math>\pi</math> radian).
The projective anomaly <math>\theta</math> is one of four angular parameters (anomalies) that defines a position along an orbit, the other two being the eccentric anomaly, true anomaly and the mean anomaly.
In the projective geometry, circle, ellipse, parabolla, hyperbolla are treated as a same kind of quadratic curves.
projective parameters and projective anomalyEdit
An orbit type is classified by two project parameters <math>\alpha</math> and <math>\beta</math> as follows,
- circular orbit <math>\beta=0</math>
- elliptic orbit <math>\alpha \beta < 1</math>
- parabolic orbit <math>\alpha \beta = 1</math>
- hyperbolic orbit <math>\alpha \beta > 1</math>
- linear orbit <math>\alpha = \beta </math>
- imaginary orbit <math>\alpha < \beta </math>
where
<math>\alpha= \frac{ ( 1 + e ) ( q - p ) + \sqrt{ ( 1 + e )^2 ( q + p )^2 + 4 e^2} }{2}</math>
<math>\beta= \frac{ 2 e }{ (1 + e ) ( q + p ) + \sqrt{ ( 1 + e )^2 ( q + p )^2 + 4 e^2} }</math>
<math>q = (1 - e) a</math>
<math>p = \frac{1}{Q} = \frac{ 1 }{ (1 + e) a}</math>
where <math>\alpha</math> is semi major axis,<math>e</math> is eccentricity, <math>q</math> is perihelion distance、<math>Q</math> is aphelion distance.
Position and heliocentric distance of the planet <math>x</math>, <math>y</math> and <math>r</math> can be calculated as functions of the projective anomaly <math>\theta</math> :
<math>x = \frac{ - \beta + \alpha \cos \theta }{ 1 + \alpha \beta \cos \theta }</math>
<math>y = \frac{ \sqrt{ \alpha^2- \beta^2 } \sin \theta}{ 1 + \alpha \beta \cos \theta }</math>
<math>r = \frac{ \alpha - \beta \cos \theta }{ 1 + \alpha \beta \cos \theta }</math>
Kepler's equationEdit
The projective anomaly <math>\theta</math> can be calculated from the eccentric anomaly <math>u</math> as follows,
- Case : <math> \alpha \beta < 1 </math>
<math>\tan \frac{ \theta }{ 2 } = \sqrt{ \frac{ 1 + \alpha \beta }{ 1 - \alpha \beta } } \tan \frac{ u }{ 2 } </math>
<math> u - e \sin u = M = \left(\frac{1 - \alpha^2 \beta^2}{\alpha ( 1 + \beta^2 )}\right)^{3/2} k ( t - T_0 )</math>
- case : <math> \alpha \beta = 1 </math>
<math> \frac{ s^3 }{ 3 } + \frac{ \alpha^2 - 1 }{ \alpha^2 + 1} s = \frac{2 k ( t - T_0 )}{\sqrt{ \alpha ( \alpha^2 + 1)^3 } } </math>
<math>s = \tan \frac{ \theta }{ 2 }</math>
- case : <math> \alpha \beta > 1 </math>
<math>\tan \frac{ \theta }{ 2 } = \sqrt{ \frac{ \alpha \beta + 1 }{ \alpha \beta - 1 } } \tanh \frac{ u }{ 2 } </math>
<math> e \sinh u - u = M = \left(\frac{ \alpha^2 \beta^2 - 1 }{\alpha ( 1 + \beta^2 )}\right)^{3/2} k ( t - T_0 )</math>
The above equations are called Kepler's equation.
Generalized anomalyEdit
For arbitrary constant <math>\lambda</math>, the generalized anomaly <math>\Theta</math> is related as
<math>\tan \frac{ \Theta }{ 2 } = \lambda \tan \frac{ u }{ 2 } </math>
The eccentric anomaly, the true anomaly, and the projective anomaly are the cases of <math>\lambda=1</math>, <math>\lambda=\sqrt{\frac{1+e}{1-e}}</math>, <math>\lambda=\sqrt{\frac{1+\alpha\beta}{1-\alpha\beta}}</math>, respectively.
- Sato, I., "A New Anomaly of Keplerian Motion", Astronomical Journal Vol.116, pp.2038-3039, (1997)
See alsoEdit
- Two body problem
- Mean anomaly
- Eccentric anomaly
- Kepler's equation
- projective geometry
- Kepler's laws of planetary motion
- Projective anomaly
- Ellipse
- Hyperbola
ReferencesEdit
Further readingEdit
- Murray, C. D. & Dermott, S. F., 1999, Solar System Dynamics, Cambridge University Press, Cambridge. Template:ISBN
- Plummer, H. C., 1960, An Introductory Treatise on Dynamical Astronomy, Dover Publications, New York. Template:OCLC (Reprint of the 1918 Cambridge University Press edition.)