Template:Short description Template:Semireg polyhedra db In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

NamesEdit

The name truncated cuboctahedron, given originally by Johannes Kepler, is misleading: an actual truncation of a cuboctahedron has rectangles instead of squares; however, this nonuniform polyhedron is topologically equivalent to the Archimedean solid unrigorously named truncated cuboctahedron.

Alternate interchangeable names are:

Template:Multiple image

There is a nonconvex uniform polyhedron with a similar name: the nonconvex great rhombicuboctahedron.

Cartesian coordinatesEdit

The Cartesian coordinates for the vertices of a truncated cuboctahedron having edge length 2 and centered at the origin are all the permutations of: <math display=block>\Bigl(\pm 1, \quad \pm\left(1 + \sqrt 2\right), \quad \pm\left(1 + 2\sqrt 2\right) \Bigr).</math>

Area and volumeEdit

The area A and the volume V of the truncated cuboctahedron of edge length a are:

<math>\begin{align}

A &= 12\left(2+\sqrt{2}+\sqrt{3}\right) a^2 &&\approx 61.755\,1724~a^2, \\ V &= \left(22+14\sqrt{2}\right) a^3 &&\approx 41.798\,9899~a^3. \end{align}</math>

DissectionEdit

Template:Multiple image The truncated cuboctahedron is the convex hull of a rhombicuboctahedron with cubes above its 12 squares on 2-fold symmetry axes. The rest of its space can be dissected into 6 square cupolas below the octagons, and 8 triangular cupolas below the hexagons.

A dissected truncated cuboctahedron can create a genus 5, 7, or 11 Stewart toroid by removing the central rhombicuboctahedron, and either the 6 square cupolas, the 8 triangular cupolas, or the 12 cubes respectively. Many other lower symmetry toroids can also be constructed by removing the central rhombicuboctahedron, and a subset of the other dissection components. For example, removing 4 of the triangular cupolas creates a genus 3 toroid; if these cupolas are appropriately chosen, then this toroid has tetrahedral symmetry.<ref>B. M. Stewart, Adventures Among the Toroids (1970) Template:Isbn</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Uniform coloringsEdit

There is only one uniform coloring of the faces of this polyhedron, one color for each face type.

A 2-uniform coloring, with tetrahedral symmetry, exists with alternately colored hexagons.

Orthogonal projectionsEdit

Template:Multiple image The truncated cuboctahedron has two special orthogonal projections in the A2 and B2 Coxeter planes with [6] and [8] projective symmetry, and numerous [2] symmetries can be constructed from various projected planes relative to the polyhedron elements.

Orthogonal projections
Centered by Vertex Edge
4-6
Edge
4-8
Edge
6-8
Face normal
4-6
Image File:Cube t012 v.png File:Cube t012 e46.png File:Cube t012 e48.png File:Cube t012 e68.png File:Cube t012 f46.png
Projective
symmetry
[2]+ [2] [2] [2] [2]
Centered by Face normal
Square
Face normal
Octagon
Face
Square
Face
Hexagon
Face
Octagon
Image File:Cube t012 af4.png File:Cube t012 af8.png File:Cube t012 f4.png File:3-cube t012.svg File:3-cube t012 B2.svg
Projective
symmetry
[2] [2] [2] [6] [4]

Spherical tilingEdit

The truncated cuboctahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

File:Uniform tiling 432-t012.png File:Truncated cuboctahedron stereographic projection square.png File:Truncated cuboctahedron stereographic projection hexagon.png File:Truncated cuboctahedron stereographic projection octagon.png
Orthogonal projection square-centered hexagon-centered octagon-centered
Stereographic projections

Full octahedral groupEdit

Like many other solids the truncated octahedron has full octahedral symmetry - but its relationship with the full octahedral group is closer than that: Its 48 vertices correspond to the elements of the group, and each face of its dual is a fundamental domain of the group.

The image on the right shows the 48 permutations in the group applied to an example object (namely the light JF compound on the left). The 24 light elements are rotations, and the dark ones are their reflections.

The edges of the solid correspond to the 9 reflections in the group:

  • Those between octagons and squares correspond to the 3 reflections between opposite octagons.
  • Hexagon edges correspond to the 6 reflections between opposite squares.
  • (There are no reflections between opposite hexagons.)

The subgroups correspond to solids that share the respective vertices of the truncated octahedron.
E.g. the 3 subgroups with 24 elements correspond to a nonuniform snub cube with chiral octahedral symmetry, a nonuniform rhombicuboctahedron with pyritohedral symmetry (the cantic snub octahedron) and a nonuniform truncated octahedron with full tetrahedral symmetry. The unique subgroup with 12 elements is the alternating group A4. It corresponds to a nonuniform icosahedron with chiral tetrahedral symmetry.

Subgroups and corresponding solids
Truncated cuboctahedron
Template:CDD
tr{4,3}
Snub cube
Template:CDD
sr{4,3}
Rhombicuboctahedron
Template:CDD
s2{3,4}
Truncated octahedron
Template:CDD
h1,2{4,3}
Icosahedron
Template:CDD
[4,3]
Full octahedral
[4,3]+
Chiral octahedral
[4,3+]
Pyritohedral
[1+,4,3] = [3,3]
Full tetrahedral
[1+,4,3+] = [3,3]+
Chiral tetrahedral
File:Polyhedron great rhombi 6-8 max.png File:Polyhedron great rhombi 6-8 subsolid snub right maxmatch.png File:Polyhedron great rhombi 6-8 subsolid pyritohedral maxmatch.png File:Polyhedron great rhombi 6-8 subsolid tetrahedral maxmatch.png File:Polyhedron great rhombi 6-8 subsolid 20 maxmatch.png
all 48 vertices 24 vertices 12 vertices

Related polyhedraEdit

File:Conway polyhedron b3O.png File:Conway polyhedron b3C.png
Bowtie tetrahedron and cube contain two trapezoidal faces in place of each square.<ref>Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons Craig S. Kaplan</ref>

The truncated cuboctahedron is one of a family of uniform polyhedra related to the cube and regular octahedron.

Template:Octahedral truncations

This polyhedron can be considered a member of a sequence of uniform patterns with vertex configuration (4.6.2p) and Coxeter-Dynkin diagram Template:CDD. For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p < 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling. Template:Omnitruncated table Template:Omnitruncated4 table Template:Omnitruncated34 table

It is first in a series of cantitruncated hypercubes: Template:Cantitruncated hypercube polytopes

Truncated cuboctahedral graphEdit

Template:Infobox graph In the mathematical field of graph theory, a truncated cuboctahedral graph (or great rhombcuboctahedral graph) is the graph of vertices and edges of the truncated cuboctahedron, one of the Archimedean solids. It has 48 vertices and 72 edges, and is a zero-symmetric and cubic Archimedean graph.<ref>Template:Citation</ref>

See alsoEdit

Template:Sister project

ReferencesEdit

Template:Reflist

External linksEdit

Template:Archimedean solids Template:Polyhedron navigator