Volume integral
Template:Short description {{#invoke:sidebar|collapsible | class = plainlist | titlestyle = padding-bottom:0.25em; | pretitle = Part of a series of articles about | title = Calculus | image = <math>\int_{a}^{b} f'(t) \, dt = f(b) - f(a)</math> | listtitlestyle = text-align:center; | liststyle = border-top:1px solid #aaa;padding-top:0.15em;border-bottom:1px solid #aaa; | expanded = multivariable | abovestyle = padding:0.15em 0.25em 0.3em;font-weight:normal; | above =
Template:EndflatlistTemplate:Startflatlist
| list2name = differential | list2titlestyle = display:block;margin-top:0.65em; | list2title = Template:Bigger | list2 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Definitions | content1 =
| heading2 = Concepts | content2 =
- Differentiation notation
- Second derivative
- Implicit differentiation
- Logarithmic differentiation
- Related rates
- Taylor's theorem
| heading3 = Rules and identities | content3 =
- Sum
- Product
- Chain
- Power
- Quotient
- L'Hôpital's rule
- Inverse
- General Leibniz
- Faà di Bruno's formula
- Reynolds
}}
| list3name = integral | list3title = Template:Bigger | list3 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Definitions
| content2 =
- Antiderivative
- Integral (improper)
- Riemann integral
- Lebesgue integration
- Contour integration
- Integral of inverse functions
| heading3 = Integration by | content3 =
- Parts
- Discs
- Cylindrical shells
- Substitution (trigonometric, tangent half-angle, Euler)
- Euler's formula
- Partial fractions (Heaviside's method)
- Changing order
- Reduction formulae
- Differentiating under the integral sign
- Risch algorithm
}}
| list4name = series | list4title = Template:Bigger | list4 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Convergence tests | content2 =
- Summand limit (term test)
- Ratio
- Root
- Integral
- Direct comparison
Limit comparison- Alternating series
- Cauchy condensation
- Dirichlet
- Abel
}}
| list5name = vector | list5title = Template:Bigger | list5 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
| heading2 = Theorems | content2 =
}}
| list6name = multivariable | list6title = Template:Bigger | list6 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | heading1 = Formalisms | content1 =
| heading2 = Definitions | content2 =
- Partial derivative
- Multiple integral
- Line integral
- Surface integral
- Volume integral
- Jacobian
- Hessian
}}
| list7name = advanced | list7title = Template:Bigger | list7 ={{#invoke:sidebar|sidebar|child=yes
|contentclass=hlist | content1 =
}}
| list8name = specialized | list8title = Template:Bigger | list8 =
| list9name = miscellanea | list9title = Template:Bigger | list9 =
- Precalculus
- History
- Glossary
- List of topics
- Integration Bee
- Mathematical analysis
- Nonstandard analysis
}}
In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function.
In coordinatesEdit
Often the volume integral is represented in terms of a differential volume element <math> dV=dx\, dy\, dz </math>. <math display="block">\iiint_D f(x,y,z)\,dV.</math> It can also mean a triple integral within a region <math>D \subset \R^3</math> of a function <math>f(x,y,z),</math> and is usually written as: <math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz.</math> A volume integral in cylindrical coordinates is <math display="block">\iiint_D f(\rho,\varphi,z) \rho \,d\rho \,d\varphi \,dz,</math> and a volume integral in spherical coordinates (using the ISO convention for angles with <math>\varphi</math> as the azimuth and <math>\theta</math> measured from the polar axis (see more on conventions)) has the form <math display="block">\iiint_D f(r,\theta,\varphi) r^2 \sin\theta \,dr \,d\theta\, d\varphi .</math> The triple integral can be transformed from Cartesian coordinates to any arbitrary coordinate system using the Jacobian matrix and determinant. Suppose we have a transformation of coordinates from <math> (x,y,z)\mapsto(u,v,w) </math>. We can represent the integral as the following. <math display="block">\iiint_D f(x,y,z)\,dx\,dy\,dz=\iiint_D f(u,v,w)\left|\frac{\partial (x,y,z)}{\partial (u,v,w)}\right|\,du\,dv\,dw</math> Where we define the Jacobian determinant to be. <math display="block"> \mathbf{J}=\frac{\partial (x,y,z)}{\partial (u,v,w)}= \begin{vmatrix} \frac{\partial x}{\partial u}& \frac{\partial x}{\partial v}& \frac{\partial x}{\partial w}\\ \frac{\partial y}{\partial u}& \frac{\partial y}{\partial v}& \frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u}& \frac{\partial z}{\partial v}& \frac{\partial z}{\partial w}\\ \end{vmatrix} </math>
ExampleEdit
Integrating the equation <math> f(x,y,z) = 1 </math> over a unit cube yields the following result: <math display="block">\int_0^1 \int_0^1 \int_0^1 1 \,dx \,dy \,dz = \int_0^1 \int_0^1 (1 - 0) \,dy \,dz = \int_0^1 \left(1 - 0\right) dz = 1 - 0 = 1</math>
So the volume of the unit cube is 1 as expected. This is rather trivial however, and a volume integral is far more powerful. For instance if we have a scalar density function on the unit cube then the volume integral will give the total mass of the cube. For example for density function: <math display="block"> \begin{cases} f: \R^3 \to \R \\ f: (x,y,z) \mapsto x+y+z \end{cases}</math> the total mass of the cube is: <math display="block">\int_0^1 \int_0^1 \int_0^1 (x+y+z) \,dx \,dy \,dz = \int_0^1 \int_0^1 \left(\frac 1 2 + y + z\right) dy \,dz = \int_0^1 (1 + z) \, dz = \frac 3 2</math>
See alsoEdit
External linksEdit
- Template:Springer
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:VolumeIntegral%7CVolumeIntegral.html}} |title = Volume integral |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}