Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Falling and rising factorials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical functions}} {{Use American English|date = March 2019}} {{Redirect|Rising power|the description of a sovereign state or union of states with significant rising influence in global affairs|emerging power}} In [[mathematics]], the '''falling factorial''' (sometimes called the '''descending factorial''',<ref name=Steffensen/> '''falling sequential product''', or '''lower factorial''') is defined as the polynomial <math display="block"> \begin{align} (x)_n = x^\underline{n} &= \overbrace{x(x-1)(x-2)\cdots(x-n+1)}^{n\text{ factors}} \\ &= \prod_{k=1}^n(x-k+1) = \prod_{k=0}^{n-1}(x-k) . \end{align}</math> The '''rising factorial''' (sometimes called the '''Pochhammer function''', '''Pochhammer polynomial''', '''ascending factorial''',<ref name=Steffensen> {{cite book | last = Steffensen | first = J.F. | author-link = Johan Frederik Steffensen | date = 17 March 2006 | title = Interpolation | publisher = Dover Publications | edition = 2nd | isbn = 0-486-45009-0 | page = 8 }} β A reprint of the 1950 edition by Chelsea Publishing. </ref> '''rising sequential product''', or '''upper factorial''') is defined as <math display="block"> \begin{align} x^{(n)} = x^\overline{n} &= \overbrace{x(x+1)(x+2)\cdots(x+n-1)}^{n\text{ factors}} \\ &= \prod_{k=1}^n(x+k-1) = \prod_{k=0}^{n-1}(x+k) . \end{align}</math> The value of each is taken to be 1 (an [[empty product]]) when <math>n=0</math>. These symbols are collectively called '''factorial powers'''.<ref name="The Art of Computer Programming"> {{cite book |last=Knuth |first=D.E. |author-link=Donald Knuth |title=[[The Art of Computer Programming]] |edition=3rd |volume=1 |page=50 }} </ref> The '''Pochhammer symbol''', introduced by [[Leo August Pochhammer]], is the notation <math>(x)_n</math>, where {{mvar|n}} is a [[non-negative integer]]. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used <math>(x)_n</math> with yet another meaning, namely to denote the [[binomial coefficient]] <math>\tbinom{x}{n}</math>.<ref name=Knuth> {{cite journal |last=Knuth |first=D.E. |author-link=Donald Knuth |year=1992 |title=Two notes on notation |journal=[[American Mathematical Monthly]] |volume=99 |issue=5 |pages=403β422 |arxiv=math/9205211 |doi=10.2307/2325085 |jstor=2325085 |s2cid=119584305 }} The remark about the Pochhammer symbol is on page 414. </ref> In this article, the symbol <math>(x)_n</math> is used to represent the falling factorial, and the symbol <math>x^{(n)}</math> is used for the rising factorial. These conventions are used in [[combinatorics]],<ref> {{cite book |last=Olver |first=P.J. |author-link=Peter J. Olver |year=1999 |title=Classical Invariant Theory |publisher=Cambridge University Press |isbn=0-521-55821-2 |mr=1694364 |page=101 }} </ref> although [[Donald Knuth|Knuth]]'s underline and overline notations <math>x^\underline{n}</math> and <math>x^\overline{n}</math> are increasingly popular.<ref name="The Art of Computer Programming"/><ref> {{cite book |last1=Harris |last2=Hirst |last3=Mossinghoff |year=2008 |title=Combinatorics and Graph Theory |publisher=Springer |isbn=978-0-387-79710-6 |at=ch. 2 }} </ref> In the theory of [[special functions]] (in particular the [[hypergeometric function]]) and in the standard reference work ''[[Abramowitz and Stegun]]'', the Pochhammer symbol <math>(x)_n</math> is used to represent the rising factorial.<ref> {{cite book |editor1=Abramowitz, Milton |editor2=Stegun, Irene A. |date=December 1972 |orig-date=June 1964 |title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables |title-link=Abramowitz and Stegun |place=Washington, DC |publisher=[[United States Department of Commerce]] |series=[[National Bureau of Standards]] [[Applied Mathematics]] Series |volume=55 |lccn=64-60036 |at=p. 256 eqn. 6.1.22 }} </ref><ref> {{cite book |last=Slater |first=Lucy J. |year=1966 |title=Generalized Hypergeometric Functions |publisher=Cambridge University Press |mr=0201688 |at=Appendix I }} β Gives a useful list of formulas for manipulating the rising factorial in {{math|(''x''){{sub|''n''}}}} notation. </ref> When <math>x</math> is a positive integer, <math>(x)_n</math> gives the number of [[k-permutation|{{mvar|n}}-permutations]] (sequences of distinct elements) from an {{mvar|x}}-element set, or equivalently the number of [[injective function]]s from a set of size <math>n</math> to a set of size <math>x</math>. The rising factorial <math>x^{(n)}</math> gives the number of [[Partition of a set|partitions]] of an <math>n</math>-element set into <math>x</math> ordered sequences (possibly empty).{{efn|Here the parts are distinct; for example, when {{math|1=''x'' = ''n'' = 2}}, the {{math|1=(2){{sup|(2)}} = 6}} partitions are <math>(12, -)</math>, <math>(21, -)</math>, <math>(1, 2)</math>, <math>(2, 1)</math>, <math>(-, 12)</math>, and <math>(-, 21)</math>, where β denotes an empty part.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)