Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetoreception
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== In mammals ==== Some mammals are capable of magnetoreception. When [[wood mouse|woodmice]] are removed from their home area and deprived of visual and olfactory cues, they orient towards their homes until an inverted magnetic field is applied to their cage.<ref>{{cite journal |last1=Mather |first1=J. G. |last2=Baker |first2=R. R. |year=1981 |title=Magnetic sense of direction in woodmice for route-based navigation |journal=[[Nature (journal)|Nature]] |volume=291 |issue=5811 |pages=152–155 |doi=10.1038/291152a0 |bibcode=1981Natur.291..152M |s2cid=4262309 }}</ref> When the same mice are allowed access to visual cues, they are able to orient themselves towards home despite the presence of inverted magnetic fields. This indicates that woodmice use magnetic fields to orient themselves when no other cues are available. The magnetic sense of woodmice is likely based on a radical-pair mechanism.<ref>{{cite journal |last1=Malkemper |first1=E. Pascal |last2=Eder |first2=Stephan H. K. |last3=Begall |first3=Sabine |last4=Phillips |first4=John B. |last5=Winklhofer |first5=Michael |last6=Hart |first6=Vlastimil |last7=Burda |first7=Hynek |date=29 April 2015 |title=Magnetoreception in the wood mouse ( Apodemus sylvaticus ): influence of weak frequency-modulated radio frequency fields |journal=[[Scientific Reports]] |volume=5 |issue=1 |page=9917 |doi=10.1038/srep09917 |pmc=4413948 |pmid=25923312 |bibcode=2015NatSR...4.9917M}}</ref> [[File:Graumull IMG 4039.jpg|thumb|The [[Zambian mole-rat]] is one of several mammals that use magnetic fields, in their case for nest orientation.<ref name="Nemec 2001" />]] The [[Zambian mole-rat]], a subterranean mammal, uses magnetic fields to aid in nest orientation.<ref name="Marhold Wiltschko Burda">{{cite journal |title=A magnetic polarity compass for direction finding in a subterranean mammal |last1=Marhold |first1=S. |last2=Wiltschko |first2=Wolfgang |last3=Burda |first3=H. |year=1997 |journal=[[The Science of Nature|Naturwissenschaften]] |volume=84 |issue=9 |pages=421–423 |doi=10.1007/s001140050422 |bibcode=1997NW.....84..421M |s2cid=44399837 }}</ref> In contrast to woodmice, Zambian mole-rats do not rely on radical-pair based magnetoreception, perhaps due to their subterranean lifestyle. Experimental exposure to magnetic fields leads to an increase in neural activity within the [[superior colliculus]], as measured by immediate [[gene expression]]. The activity level of neurons within two levels of the superior colliculus, the outer sublayer of the intermediate gray layer and the deep gray layer, were elevated in a non-specific manner when exposed to various magnetic fields. However, within the inner sublayer of the intermediate gray layer (InGi) there were two or three clusters of cells that respond in a more specific manner. The more time the mole rats were exposed to a magnetic field, the greater the immediate early gene expression within the InGi.<ref name="Nemec 2001">{{cite journal |last1=Nemec |first1=P. |last2=Altmann |first2=J. |last3=Marhold |first3=S. |last4=Burda |first4=H. |last5=Oelschlager |first5=H. H. |year=2001 |title=Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal |journal=[[Science (journal)|Science]] |volume=294 |issue=5541 |pages=366–368 |doi=10.1126/science.1063351 |pmid=11598299 |bibcode=2001Sci...294..366N |s2cid=41104477 }}</ref> Magnetic fields appear to play a role in [[bat]] orientation. They use [[Animal echolocation|echolocation]] to orient themselves over short distances, typically ranging from a few centimetres up to 50 metres.<ref>{{cite journal |last1=Boonman |first1=Arjan |last2=Bar-On |first2=Yinon |last3=Yovel |first3=Yossi |date=2013-09-11 |title=It's not black or white—on the range of vision and echolocation in echolocating bats |journal=[[Frontiers in Physiology]] |volume=4 |page=248 |doi=10.3389/fphys.2013.00248 |doi-access=free |pmid=24065924 |issn=1664-042X|pmc=3769648 }}</ref> When non-migratory big brown bats (''[[Eptesicus fuscus]]'') are taken from their home roosts and exposed to magnetic fields rotated 90 degrees from magnetic north, they become disoriented; it is unclear whether they use the magnetic sense as a map, a compass, or a compass calibrator.<ref>{{cite journal |last1=Holland |first1=R. A. |last2=Thorup |first2=K. |last3=Vonhof |first3=M. J. |last4=Cochran |first4=W. W. |last5=Wikelski |first5=M. |year=2006 |title=Bat orientation using Earth's magnetic field |journal=[[Nature (journal)|Nature]] |volume=444 |issue=7120 |page=702 |doi=10.1038/444702a |pmid=17151656 |bibcode=2006Natur.444..702H |s2cid=4379579 |doi-access=free }}</ref> Another bat species, the greater mouse-eared bat (''[[Myotis myotis]]''), appears to use the Earth's magnetic field in its home range as a compass, but needs to calibrate this at sunset or dusk.<ref name="Holland Borissov Siemers 2010">{{cite journal |last1=Holland |first1=Richard A. |last2=Borissov |first2=Ivailo |last3=Siemers |first3=Björn M. |title=A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun |journal=[[PNAS]] |volume=107 |issue=15 |date=29 March 2010 |issn=0027-8424 |doi=10.1073/pnas.0912477107 |pages=6941–6945|pmid=20351296 |pmc=2872435 |bibcode=2010PNAS..107.6941H |doi-access=free }}</ref> In migratory soprano pipistrelles (''[[Soprano pipistrelle|Pipistrellus pygmaeus]]''), experiments using mirrors and [[Helmholtz coil]]s show that they calibrate the magnetic field using the position of the solar disk at sunset.<ref>{{cite journal |last1=Lindecke |first1=Oliver |last2=Elksne |first2=Alise |last3=Holland |first3=Richard A. |last4=Pētersons |first4=Gunārs |last5=Voigt |first5=Christian C. |date=April 2019 |title=Experienced Migratory Bats Integrate the Sun's Position at Dusk for Navigation at Night |url=http://dx.doi.org/10.1016/J.CUB.2019.03.002 |journal=Current Biology |volume=29 |issue=8 |pages=1369–1373.e3 |doi=10.1016/j.cub.2019.03.002 |pmid=30955934 |bibcode=2019CBio...29E1369L |issn=0960-9822}}</ref><ref>{{cite journal |last1=Schneider |first1=William T. |last2=Holland |first2=Richard A. |last3=Keišs |first3=Oskars |last4=Lindecke |first4=Oliver |date=November 2023 |title=Migratory bats are sensitive to magnetic inclination changes during the compass calibration period |journal=[[Biology Letters]] |volume=19 |issue=11 |doi=10.1098/rsbl.2023.0181 |issn=1744-957X |pmc=10684344 |pmid=38016643}}</ref> [[Red fox]]es (''Vulpes vulpes'') may be influenced by the Earth's magnetic field when [[Predation|predating]] small rodents like mice and voles. They attack these prey using a specific high-jump, preferring a north-eastern compass direction. Successful attacks are tightly clustered to the north.<ref>{{cite web |last=Cressey |first=Daniel |title=Fox 'rangefinder' sense expands the magnetic menagerie |url=http://blogs.nature.com/news/2011/01/fox_rangefinder_sense_expands.html |date=12 January 2011 |publisher=[[Nature Publishing Group]] / Macmillan |access-date=6 June 2014 |pages=<!--This is an official blog of the journal ''Nature'', and subject to editorial control.--> |archive-date=24 June 2014 |archive-url=https://web.archive.org/web/20140624052523/http://blogs.nature.com/news/2011/01/fox_rangefinder_sense_expands.html |url-status=dead }}</ref> There is not yet a consensus on whether humans can sense magnetic fields or not, but it is being studied and some researchers have found evidence suggesting it.<ref name="Wang Hilburn Wu 2019">{{cite journal |last1=Wang |first1=Connie X. |last2=Hilburn |first2=Isaac A. |last3=Wu |first3=Daw-An |last4=Mizuhara |first4=Yuki |last5=Cousté |first5=Christopher P. |last6=Abrahams |first6=Jacob N. H. |last7=Bernstein |first7=Sam E. |last8=Matani |first8=Ayumu |last9=Shimojo |first9=Shinsuke |last10=Kirschvink |first10=Joseph L. |display-authors=3 |title=Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain |journal=eNeuro |publisher=Society for Neuroscience |volume=6 |issue=2 |year=2019 |issn=2373-2822 |doi=10.1523/eneuro.0483-18.2019 |pages=ENEURO.0483–18.2019|pmid=31028046 |pmc=6494972 }}</ref><ref name="Chae Human magnetic sense">{{cite journal |last1=Chae |first1=Kwon-Seok |last2=Kim |first2=Soo-Chan |last3=Kwon |first3=Hye-Jin |last4=Kim |first4=Yongkuk |title=Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism |journal=Scientific Reports |date=30 May 2022 |volume=12 |issue=1 |page=8997 |doi=10.1038/s41598-022-12460-6 |pmid=35637212 |pmc=9151822 |bibcode=2022NatSR..12.8997C }}</ref> The [[ethmoid bone]] in the nose contains magnetic materials.<ref name="Carrubba Frilot">{{cite journal |title=Evidence of a nonlinear human magnetic sense |journal=Neuroscience |doi=10.1016/j.neuroscience.2006.08.068 |date=5 January 2007 |volume=144 |issue=1 |pages=356–357 |last1=Carrubba |first1=S. |last2=Frilot |first2=C. |last3=Chesson |first3=A.L. |last4=Marino |first4=A.A. |pmid=17069982 |s2cid=34652156 }}</ref><ref name="Chae Human magnetic sense"/> Magnetosensitive cryptochrome 2 (cry2) is present in the human retina.<ref name="Foley 2011"/> Human alpha [[brain wave]]s are affected by magnetic fields, but it is not known whether behaviour is affected.<ref name="Wang Hilburn Wu 2019"/><ref name="Foley 2011">{{cite journal |last1=Foley |first1=Lauren E. |last2=Gegear |first2=Robert J. |last3=Reppert |first3=Steven M. |title=Human cryptochrome exhibits light-dependent magnetosensitivity |journal=[[Nature Communications]] |date=2011 |volume=2 |page=356 |doi=10.1038/ncomms1364 |bibcode=2011NatCo...2..356F |pmid=21694704 |pmc=3128388}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)