Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Falling and rising factorials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The rising and falling factorials are simply related to one another: <math display="block"> \begin{alignat}{2} {(x)}_n &= {(x-n+1)}^{(n)} &&= (-1)^n (-x)^{(n)},\\ x^{(n)} &= {(x+n-1)}_{n} &&= (-1)^n (-x)_n. \end{alignat}</math> Falling and rising factorials of integers are directly related to the ordinary [[factorial]]: <math display="block"> \begin{align} n! &= 1^{(n)} = (n)_n,\\[6pt] (m)_n &= \frac{m!}{(m-n)!},\\[6pt] m^{(n)} &= \frac{(m+n-1)!}{(m-1)!}. \end{align}</math> Rising factorials of half integers are directly related to the [[double factorial]]: <math display="block"> \begin{align} \left[\frac{1}{2}\right]^{(n)} = \frac{(2n-1)!!}{2^n},\quad \left[\frac{2m+1}{2}\right]^{(n)} = \frac{(2(n+m)-1)!!}{2^n(2m-1)!!}. \end{align}</math> The falling and rising factorials can be used to express a [[binomial coefficient]]: <math display="block"> \begin{align} \frac{(x)_n}{n!} &= \binom{x}{n},\\[6pt] \frac{x^{(n)}}{n!} &= \binom{x+n-1}{n}. \end{align}</math> Thus many identities on binomial coefficients carry over to the falling and rising factorials. The rising and falling factorials are well defined in any [[Unital ring|unital]] [[ring (mathematics)|ring]], and therefore <math>x</math> can be taken to be, for example, a [[complex number]], including negative integers, or a [[polynomial]] with complex coefficients, or any [[complex-valued function]]. ===Real numbers and negative ''n''=== The falling factorial can be extended to [[real number|real]] values of <math>x</math> using the [[gamma function]] provided <math>x</math> and <math>x+n</math> are real numbers that are not negative integers: <math display="block"> (x)_n = \frac{\Gamma(x+1)}{\Gamma(x-n+1)}\ , </math> and so can the rising factorial: <math display="block"> x^{(n)} = \frac{\Gamma(x+n)}{\Gamma(x)}\ . </math> ===Calculus=== Falling factorials appear in multiple [[derivative|differentiation]] of simple power functions: <math display="block"> \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n x^a = (a)_n \cdot x^{a-n}. </math> The rising factorial is also integral to the definition of the [[hypergeometric function]]: The hypergeometric function is defined for <math>|z| < 1</math> by the [[power series]] <math display="block"> {}_2F_1(a,b;c;z) = \sum_{n=0}^\infty \frac{a^{(n)} b^{(n)}}{c^{(n)}} \frac{z^n}{n!} </math> provided that <math>c \neq 0, -1, -2, \ldots</math>. Note, however, that the hypergeometric function literature typically uses the notation <math>(a)_n</math> for rising factorials.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)