Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
F-distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== ===Relation to the chi-squared distribution=== In instances where the ''F''-distribution is used, for example in the [[analysis of variance]], independence of <math>U_1</math> and <math>U_2</math> (defined above) might be demonstrated by applying [[Cochran's theorem]]. Equivalently, since the [[chi-squared distribution]] is the sum of squares of [[Independence (probability theory)|independent]] [[standard normal]] random variables, the random variable of the ''F''-distribution may also be written <math display="block">X = \frac{s_1^2}{\sigma_1^2} \div \frac{s_2^2}{\sigma_2^2},</math> where <math>s_1^2 = \frac{S_1^2}{d_1}</math> and <math>s_2^2 = \frac{S_2^2}{d_2}</math>, <math>S_1^2</math> is the sum of squares of <math>d_1</math> random variables from normal distribution <math>N(0,\sigma_1^2)</math> and <math>S_2^2</math> is the sum of squares of <math>d_2</math> random variables from normal distribution <math>N(0,\sigma_2^2)</math>. In a [[frequentist]] context, a scaled ''F''-distribution therefore gives the probability <math>p(s_1^2/s_2^2 \mid \sigma_1^2, \sigma_2^2)</math>, with the ''F''-distribution itself, without any scaling, applying where <math>\sigma_1^2</math> is being taken equal to <math>\sigma_2^2</math>. This is the context in which the ''F''-distribution most generally appears in [[F-test|''F''-tests]]: where the null hypothesis is that two independent normal variances are equal, and the observed sums of some appropriately selected squares are then examined to see whether their ratio is significantly incompatible with this null hypothesis. The quantity <math>X</math> has the same distribution in Bayesian statistics, if an uninformative rescaling-invariant [[Jeffreys prior]] is taken for the [[prior probability|prior probabilities]] of <math>\sigma_1^2</math> and <math>\sigma_2^2</math>.<ref>{{cite book |first=G. E. P. |last=Box |first2=G. C. |last2=Tiao |year=1973 |title=Bayesian Inference in Statistical Analysis |publisher=Addison-Wesley |page=110 |isbn=0-201-00622-7 }}</ref> In this context, a scaled ''F''-distribution thus gives the posterior probability <math>p(\sigma^2_2 /\sigma_1^2 \mid s^2_1, s^2_2)</math>, where the observed sums <math>s^2_1</math> and <math>s^2_2</math> are now taken as known. ===In general=== *If <math>X \sim \chi^2_{d_1}</math> and <math>Y \sim \chi^2_{d_2}</math> ([[Chi squared distribution]]) are [[independence (probability theory)|independent]], then <math> \frac{X / d_1}{Y / d_2} \sim \mathrm{F}(d_1, d_2)</math> *If <math>X_k \sim \Gamma(\alpha_k,\beta_k)\,</math> ([[Gamma distribution]]) are independent, then <math> \frac{\alpha_2\beta_1 X_1}{\alpha_1\beta_2 X_2} \sim \mathrm{F}(2\alpha_1, 2\alpha_2)</math> *If <math>X \sim \operatorname{Beta}(d_1/2,d_2/2)</math> ([[Beta distribution]]) then <math>\frac{d_2 X}{d_1(1-X)} \sim \operatorname{F}(d_1,d_2)</math> *Equivalently, if <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1 X/d_2}{1+d_1 X/d_2} \sim \operatorname{Beta}(d_1/2,d_2/2)</math>. *If <math>X \sim F(d_1, d_2)</math>, then <math>\frac{d_1}{d_2}X</math> has a [[beta prime distribution]]: <math>\frac{d_1}{d_2}X \sim \operatorname{\beta^\prime}\left(\tfrac{d_1}{2},\tfrac{d_2}{2}\right)</math>. *If <math>X \sim F(d_1, d_2)</math> then <math>Y = \lim_{d_2 \to \infty} d_1 X</math> has the [[chi-squared distribution]] <math>\chi^2_{d_1}</math> *<math>F(d_1, d_2)</math> is equivalent to the scaled [[Hotelling's T-squared distribution]] <math>\frac{d_2}{d_1(d_1+d_2-1)} \operatorname{T}^2 (d_1, d_1 +d_2-1) </math>. *If <math>X \sim F(d_1, d_2)</math> then <math>X^{-1} \sim F(d_2, d_1)</math>. *If <math>X\sim t_{(n)}</math> β [[Student's t-distribution]] β then: <math display="block">\begin{align} X^{2} &\sim \operatorname{F}(1, n) \\ X^{-2} &\sim \operatorname{F}(n, 1) \end{align}</math> *''F''-distribution is a special case of type 6 [[Pearson distribution]] *If <math>X</math> and <math>Y</math> are independent, with <math>X,Y\sim</math> [[Laplace distribution|Laplace(''ΞΌ'', ''b'')]] then <math display="block"> \frac{|X-\mu|}{|Y-\mu|} \sim \operatorname{F}(2,2) </math> *If <math>X\sim F(n,m)</math> then <math>\tfrac{\log{X}}{2} \sim \operatorname{FisherZ}(n,m)</math> ([[Fisher's z-distribution]]) *The [[noncentral F-distribution|noncentral ''F''-distribution]] simplifies to the ''F''-distribution if <math>\lambda=0</math>. *The doubly [[noncentral F-distribution|noncentral ''F''-distribution]] simplifies to the ''F''-distribution if <math> \lambda_1 = \lambda_2 = 0 </math> *If <math>\operatorname{Q}_X(p)</math> is the quantile ''p'' for <math>X\sim F(d_1,d_2)</math> and <math>\operatorname{Q}_Y(1-p)</math> is the quantile <math>1-p</math> for <math>Y\sim F(d_2,d_1)</math>, then <math display="block">\operatorname{Q}_X(p)=\frac{1}{\operatorname{Q}_Y(1-p)}.</math> * ''F''-distribution is an instance of [[ratio distributions]] * [[Kendall's W|W]]-distribution<ref>{{Cite journal |last1=Mahmoudi |first1=Amin |last2=Javed |first2=Saad Ahmed |date=October 2022 |title=Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach |journal=Group Decision and Negotiation |language=en |volume=31 |issue=5 |pages=1051β1096 |doi=10.1007/s10726-022-09790-1 |issn=0926-2644 |pmc=9409630 |pmid=36042813}}</ref> is a unique parametrization of F-distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)