Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
First fundamental form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Calculating lengths and areas== The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The [[line element]] {{math|''ds''}} may be expressed in terms of the coefficients of the first fundamental form as <math display="block">ds^2 = E\,du^2+2F\,du\,dv+G\,dv^2 \,.</math> The classical area element given by {{math|1=''dA'' = {{abs|''X<sub>u</sub>'' Γ ''X<sub>v</sub>''}} ''du'' ''dv''}} can be expressed in terms of the first fundamental form with the assistance of [[Lagrange's identity]], <math display="block">dA = |X_u \times X_v| \ du\, dv= \sqrt{ \langle X_u,X_u \rangle \langle X_v,X_v \rangle - \left\langle X_u,X_v \right\rangle^2 } \, du\, dv = \sqrt{EG-F^2} \, du\, dv.</math> ===Example: curve on a sphere=== A [[spherical curve]] on the [[unit sphere]] in {{math|'''R'''<sup>3</sup>}} may be parametrized as <math display="block">X(u,v) = \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix},\ (u,v) \in [0,2\pi) \times [0,\pi].</math> Differentiating {{math|''X''(''u'',''v'')}} with respect to {{mvar|u}} and {{mvar|v}} yields <math display="block">\begin{align} X_u &= \begin{bmatrix} -\sin u \sin v \\ \cos u \sin v \\ 0 \end{bmatrix},\\[5pt] X_v &= \begin{bmatrix} \cos u \cos v \\ \sin u \cos v \\ -\sin v \end{bmatrix}. \end{align}</math> The coefficients of the first fundamental form may be found by taking the dot product of the [[partial derivatives]]. <math display="block">\begin{align} E &= X_u \cdot X_u = \sin^2 v \\ F &= X_u \cdot X_v = 0 \\ G &= X_v \cdot X_v = 1 \end{align}</math> so: <math display="block"> \begin{bmatrix}E & F \\F & G\end{bmatrix} =\begin{bmatrix} \sin^2 v & 0 \\0 & 1\end{bmatrix}.</math> ====Length of a curve on the sphere==== The [[equator]] of the unit sphere is a parametrized curve given by <math display="block">(u(t),v(t))=(t,\tfrac{\pi}{2})</math> with {{mvar|t}} ranging from 0 to 2{{pi}}. The line element may be used to calculate the length of this curve. <math display="block">\int_0^{2\pi} \sqrt{ E\left(\frac{du}{dt}\right)^2 + 2F \frac{du}{dt} \frac{dv}{dt} + G\left(\frac{dv}{dt}\right)^2 } \,dt = \int_0^{2\pi} \left|\sin v\right| \, dt = 2\pi \sin \tfrac{\pi}{2} = 2\pi</math> ====Area of a region on the sphere==== The area element may be used to calculate the area of the unit sphere. <math display="block">\int_0^\pi \int_0^{2\pi} \sqrt{ EG-F^2 } \ du\, dv = \int_0^\pi \int_0^{2\pi} \sin v \, du\, dv = 2\pi \Big[ {-\cos v} \Big]_0^{\pi} = 4\pi</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)