Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inflection point
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A necessary but not sufficient condition === For a function ''f'', if its second derivative {{math|''f{{''}}''(''x'')}} exists at {{math|''x''<sub>0</sub>}} and {{math|''x''<sub>0</sub>}} is an inflection point for {{mvar|f}}, then {{math|1=''f{{''}}''(''x''<sub>0</sub>) = 0}}, but this condition is not [[Sufficient condition|sufficient]] for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but an ''undulation point''. However, in algebraic geometry, both inflection points and undulation points are usually called ''inflection points''. An example of an undulation point is {{math|1=''x'' = 0}} for the function {{mvar|f}} given by {{math|1=''f''(''x'') = ''x''<sup>4</sup>}}. In the preceding assertions, it is assumed that {{mvar|f}} has some higher-order non-zero derivative at {{mvar|x}}, which is not necessarily the case. If it is the case, the condition that the first nonzero derivative has an odd order implies that the sign of {{math|''f{{'}}''(''x'')}} is the same on either side of {{mvar|x}} in a [[neighborhood (mathematics)|neighborhood]] of {{mvar|x}}. If this sign is [[positive number|positive]], the point is a ''rising point of inflection''; if it is [[negative number|negative]], the point is a ''falling point of inflection''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)