Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Material conditional
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Semantics== ===Truth table=== From a [[classical logic|classical]] [[semantics of logic|semantic perspective]], material implication is the [[binary operator|binary]] [[truth function]]al operator which returns "true" unless its first argument is true and its second argument is false. This semantics can be shown graphically in the following [[truth table]]: {{2-ary truth table|1|1|0|1|<math>A \to B</math>}} One can also consider the equivalence <math>A \to B \equiv \neg (A \land \neg B) \equiv \neg A \lor B</math>. The conditionals <math>(A \to B)</math> where the antecedent <math>A</math> is false, are called "[[vacuous truth]]s". Examples are ... * ... with <math>B</math> false: ''"If [[Marie Curie]] is a sister of [[Galileo Galilei]], then Galileo Galilei is a brother of Marie Curie."'' * ... with <math>B</math> true: ''"If Marie Curie is a sister of Galileo Galilei, then Marie Curie has a sibling."'' ===Analytic tableaux=== {{further|Method of analytic tableaux}} Formulas over the set of connectives <math>\{\to, \bot\}</math><ref>The [[well-formed formula]]s are: # Each [[propositional variable]] is a formula. # "<math>\bot</math>" is a formula. # If <math>A</math> and <math>B</math> are formulas, so is <math>(A \to B)</math>. # Nothing else is a formula.</ref> are called '''f-implicational'''.{{sfn|Franco|Goldsmith|Schlipf|Speckenmeyer|1999}} In [[classical logic]] the other connectives, such as <math>\neg</math> ([[negation]]), <math>\land</math> ([[logical conjunction|conjunction]]), <math>\lor</math> ([[disjunction]]) and <math>\leftrightarrow</math> ([[If and only if|equivalence]]), can be defined in terms of <math>\to</math> and <math>\bot</math> ([[False (logic)#False, negation and contradiction|falsity]]):<ref name="connective_needed">f-implicational formulas cannot express all valid formulas in [[Minimal logic|minimal]] (MPC) or [[intuitionistic logic|intuitionistic]] (IPC) propositional logic β in particular, <math>\lor</math> (disjunction) cannot be defined within it. In contrast, <math>\{\to, \lor, \bot \}</math> is a complete basis for MPC / IPC: from these, all other connectives (e.g., <math>\land, \neg, \leftrightarrow, \bot</math>) can be defined.</ref> <math display="block"> \begin{align} \neg A & \quad \overset{\text{def}}{=} \quad A \to \bot \\ A \land B & \quad \overset{\text{def}}{=} \quad (A \to (B \to \bot)) \to \bot \\ A \lor B & \quad \overset{\text{def}}{=} \quad (A \to \bot) \to B \\ A \leftrightarrow B & \quad \overset{\text{def}}{=} \quad \{(A \to B) \to [(B \to A) \to \bot]\} \to \bot \\ \end{align} </math> The validity of f-implicational formulas can be semantically established by the [[method of analytic tableaux]]. The logical rules are :{| style="border: none; border-spacing: 1px; border-collapse: separate;" |- | style="vertical-align: top;" | <math>\frac{\boldsymbol{\mathsf{T}}(A \to B)}{\boldsymbol{\mathsf{F}}(A) \quad \mid \quad \boldsymbol{\mathsf{T}}(B)}</math> || valign="top" | <math>\frac{\boldsymbol{\mathsf{F}}(A \to B)}{\begin{array}{c} \boldsymbol{\mathsf{T}}(A) \\ \boldsymbol{\mathsf{F}}(B)\end{array}}</math> |- |colspan="2" | <math>\boldsymbol{\mathsf{T}}(\bot)</math> : Close the branch (contradiction)<br/><math>\boldsymbol{\mathsf{F}}(\bot)</math> : Do nothing (since it just asserts no contradiction) |} <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>p \to \neg \neg p\quad</math>, by [[method of analytic tableaux]]</span> | bg=#ffffff | fg=#000000 }} <pre> F[p β ((p β β₯) β β₯)] | T[p] F[(p β β₯) β β₯] | T[p β β₯] F[β₯] ββββββββββ΄βββββββββ F[p] T[β₯] | | CONTRADICTION CONTRADICTION (T[p], F[p]) (β₯ is true) </pre> {{collapse bottom}} </div> <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>\neg \neg p \to p\quad</math>, by method of analytic tableaux</span> | bg=#ffffff | fg=#000000 }} <pre> F[((p β β₯) β β₯) β p] | T[(p β β₯) β β₯] F[p] ββββββββββ΄βββββββββ F[p β β₯] T[β₯] | | T[p] CONTRADICTION (β₯ is true) F[β₯] | CONTRADICTION (T[p], F[p]) </pre> [[Hilbert system|Hilbert-style proofs]] can be found [[Implicational propositional calculus#An alternative axiomatization|here]] or [[Peirce's law|here]]. {{collapse bottom}} </div> <div style="margin-left: 20px;"> {{collapse top | title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>(p \to q) \to ((q \to r) \to (p \to r))</math>, by method of analytic tableaux</span> | bg=#ffffff | fg=#000000 }} <pre> 1. F[(p β q) β ((q β r) β (p β r))] | // from 1 2. T[p β q] 3. F[(q β r) β (p β r)] | // from 3 4. T[q β r] 5. F[p β r] | // from 5 6. T[p] 7. F[r] ββββββββββ΄βββββββββ // from 2 8a. F[p] 8b. T[q] X ββββββββββ΄βββββββββ // from 4 9a. F[q] 9b. T[r] X X </pre> A [[Hilbert system|Hilbert-style proof]] can be found [[Implicational propositional calculus#The BernaysβTarski axiom system|here]]. {{collapse bottom}} </div>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)