Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Annihilator (ring theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Short exact sequences ==== Given a [[short exact sequence]] of modules, :<math>0 \to M' \to M \to M'' \to 0,</math> the support property :<math>\operatorname{Supp}M = \operatorname{Supp}M' \cup \operatorname{Supp}M'',</math><ref>{{Cite web|title=Lemma 10.39.9 (00L3)βThe Stacks project|url=https://stacks.math.columbia.edu/tag/00L3|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref> together with the relation with the annihilator implies :<math>V(\operatorname{Ann}_R(M)) = V(\operatorname{Ann}_R(M')) \cup V(\operatorname{Ann}_R(M'')).</math> More specifically, the relations :<math>\operatorname{Ann}_R(M') \cap \operatorname{Ann}_R(M'') \supseteq \operatorname{Ann}_R(M) \supseteq \operatorname{Ann}_R(M') \operatorname{Ann}_R(M''). </math> If the sequence splits then the inequality on the left is always an equality. This holds for arbitrary [[direct sum of modules|direct sums]] of modules, as :<math>\operatorname{Ann}_R\left( \bigoplus_{i\in I} M_i \right) = \bigcap_{i\in I} \operatorname{Ann}_R(M_i).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)